Through theoretical analysis, simulation test and practice, the law of a fracture'sinfluence on hard top coal press cracking was studied. The study focused on the relationbetween fracture and coal strength, top co...Through theoretical analysis, simulation test and practice, the law of a fracture'sinfluence on hard top coal press cracking was studied. The study focused on the relationbetween fracture and coal strength, top coal caving ability and work face layout. Based onthe investigation of the fracture system, the control of press cracking was achieved bymatching working face to fracture orientation to improve top-coal caving ability and recovery. The matching principle was pointed out: The top-coal caving working face should beperpendicular to or obliquely cross the primary fracture at a large angle, and cross thesecondary fracture at a small angle. The rational match can increase the recovery ratio oftop-coal and avoid rib spalling. The application of control technology on hard top coalpress cracking was introduced at the Iongwall top-coal caving face.展开更多
Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure ...Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 μm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The 'hooks' may anchor the 'bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.展开更多
基金Supported by the Plan of Young Backbone Teacher of Henan Provincethe Science and Technology Plan of China Coal Industry (MTKJ07-220)+2 种基金the Plan of Education Department of Henan Province (2007440004)the Plan of Science and Technology Department of Henan Province (072102240029)the Doctor Foundation of Hanan Polytechnic University (648190)
文摘Through theoretical analysis, simulation test and practice, the law of a fracture'sinfluence on hard top coal press cracking was studied. The study focused on the relationbetween fracture and coal strength, top coal caving ability and work face layout. Based onthe investigation of the fracture system, the control of press cracking was achieved bymatching working face to fracture orientation to improve top-coal caving ability and recovery. The matching principle was pointed out: The top-coal caving working face should beperpendicular to or obliquely cross the primary fracture at a large angle, and cross thesecondary fracture at a small angle. The rational match can increase the recovery ratio oftop-coal and avoid rib spalling. The application of control technology on hard top coalpress cracking was introduced at the Iongwall top-coal caving face.
基金supported by the National Natural Science Foundation of China(51176087)
文摘Biological world always provides inspirations for engineering designs, and insects are important targets to mimic. For the Coleoptera, its flight has been emphasized for long. However, the invisible folding procedure of hind wings, which occurs under the stiff elytra after flight, still remains unknown. In this paper, the wing folding process and the surficial microstructures of elytra, hind wing and abdomen are investigated by video recording and scanning electron microscopy. The results show that there are hooklike protrusions approximately 15 μm in length distributing on the inner side of elytra, and bump-like protrusions on the hind wings. The 'hooks' may anchor the 'bumps' on the main wing to prevent corrugation during folding. The horizontal protrusions observed on the abdomen shape a hairy cuticle, which is conducive to a better wing-abdomen interaction. Thus, the ratcheting mechanism that wing folding facilitated by micro-protrusions on the body surface is revealed. This new finding helps us to further understand the functions of diversely shaped protrusions in the physiology of insects. More importantly, the ratcheting mechanism could serve as a cuticle interaction model and inspire new engineering applications, such as microsystems.