In this paper, we consider a strongly-coupled parabolic system with initial boundary values. Under the appropriate conditions, using Gagliard-Nirenberg inequality, Poincare inequality, Gronwall inequality and imbeddin...In this paper, we consider a strongly-coupled parabolic system with initial boundary values. Under the appropriate conditions, using Gagliard-Nirenberg inequality, Poincare inequality, Gronwall inequality and imbedding theorem, we obtain the global existence of solutions.展开更多
In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has a...In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three- dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular, our results are applicable to some important models in biology, such as Lotk,u-Volterra competition-diffusion systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.展开更多
文摘In this paper, we consider a strongly-coupled parabolic system with initial boundary values. Under the appropriate conditions, using Gagliard-Nirenberg inequality, Poincare inequality, Gronwall inequality and imbedding theorem, we obtain the global existence of solutions.
基金supported by National Natural Science Foundation of China (Grant Nos. 11371179 and 11271172)National Science Foundation of USA (Grant No. DMS-1412454)
文摘In the one-dimensional space, traveling wave solutions of parabolic differential equations have been widely studied and well characterized. Recently, the mathematical study on higher-dimensional traveling fronts has attracted a lot of attention and many new types of nonplanar traveling waves have been observed for scalar reaction-diffusion equations with various nonlinearities. In this paper, by using the comparison argument and constructing appropriate super- and subsolutions, we study the existence, uniqueness and stability of three- dimensional traveling fronts of pyramidal shape for monotone bistable systems of reaction-diffusion equations in R3. The pyramidal traveling fronts are characterized as either a combination of planar traveling fronts on the lateral surfaces or a combination of two-dimensional V-form waves on the edges of the pyramid. In particular, our results are applicable to some important models in biology, such as Lotk,u-Volterra competition-diffusion systems with or without spatio-temporal delays, and reaction-diffusion systems of multiple obligate mutualists.