To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem...To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.展开更多
This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
This paper deals with two parabolic initial-boundary value problems in multidimensional domain. The first problem describes the situation where the spherical medium is static and the nonlinear reaction takes place onl...This paper deals with two parabolic initial-boundary value problems in multidimensional domain. The first problem describes the situation where the spherical medium is static and the nonlinear reaction takes place only at a single point. We show that under some conditions, the solution blows up in finite time and the blow-up set is the whole spherical medium. When the spherical medium is allowed to move in a special space, we investigate another parabolic initial-boundary value problem. It is proved that the blow-up can be avoided if the acceleration of the motion satisfies certain conditions.展开更多
In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t...In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t)=(u^p11v^p12)(1,t),vx(1,t)=(u^p21v^p22)(1,t),t∈(0,T),u(x,0)=u0(x),v(x,0)=v0(x),x∈(0,1)We will prove that there exist two positive constants such that:c≤max x∈[0,1]u(x,t)(T-t)^r(l1-1)≤C,0〈t〈T,c≤max x∈[0,1] v(x,t)(T-t)^1/(t1-1)≤C,0〈t〈T.where l1=l21α/α2+l22,r=α1/α2〉1,α1≤α2〈0.展开更多
The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness propert...The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness properties with respect to the parameters of these delay fractional differential equations are considered.展开更多
A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
In this paper, we study the optimal control problem of nonlinear differentialinclusions with principle operator being pseudomonotone. First, we give some propertiesof solutions of certain evolution equations. Further,...In this paper, we study the optimal control problem of nonlinear differentialinclusions with principle operator being pseudomonotone. First, we give some propertiesof solutions of certain evolution equations. Further, we prove the existence of admissibletrajectories for evolution inclusions. Then, we extend the Fillipov's selection theoremand discuss a general Lagrange type optimal control problem. Finally, we present anexample that demonstrates the appplicability of our results.展开更多
The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in whic...The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.展开更多
Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈...Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.展开更多
In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of...In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.展开更多
This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are a...This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are applied to the Cauchy problem for abstract parabolic equations, its infinite systems and boundary value problems for anisotropic partial differential equations in mixed L_p norm.展开更多
This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||...This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.展开更多
文摘To study a class of boundary value problems of parabolic differential equations with deviating arguments, averaging technique, Green’s formula and symbol function sign(·) are used. The multi dimensional problem was reduced to a one dimensional oscillation problem for ordinary differential equations or inequalities. Two oscillatory criteria of solutions for systems of parabolic differential equations with deviating arguments are obtained.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
基金Supported by the Innovation Project for University Prominent Research Talents of Henan (2003KJCX008)
文摘This paper deals with two parabolic initial-boundary value problems in multidimensional domain. The first problem describes the situation where the spherical medium is static and the nonlinear reaction takes place only at a single point. We show that under some conditions, the solution blows up in finite time and the blow-up set is the whole spherical medium. When the spherical medium is allowed to move in a special space, we investigate another parabolic initial-boundary value problem. It is proved that the blow-up can be avoided if the acceleration of the motion satisfies certain conditions.
文摘In this paper, the estimate on blow-up rate of the following nonlinear parabolic system is considered:{ut=uxx+u^l 11v^l 12,vt=vxx+u^l21v^l22,(x,t)∈(0,1)×(0,T),ux(0,t)=0,vx(0,t)=0,t∈(0,T),ux(1,t)=(u^p11v^p12)(1,t),vx(1,t)=(u^p21v^p22)(1,t),t∈(0,T),u(x,0)=u0(x),v(x,0)=v0(x),x∈(0,1)We will prove that there exist two positive constants such that:c≤max x∈[0,1]u(x,t)(T-t)^r(l1-1)≤C,0〈t〈T,c≤max x∈[0,1] v(x,t)(T-t)^1/(t1-1)≤C,0〈t〈T.where l1=l21α/α2+l22,r=α1/α2〉1,α1≤α2〈0.
文摘The Cauchy problem for some parabolic fractional partial differential equation of higher orders and with time delays is considered. The existence and unique solution of this problem is studied. Some smoothness properties with respect to the parameters of these delay fractional differential equations are considered.
文摘A class of two-level high-order accuracy explicit difference scheme for solving 3-D parabolic P.D.E is constructed. Its truncation error is (Δt2+Δx4) and the stability condition is r=Δt/Δx2=Δt/Δy2=Δt/Δz2≤1/6.
基金Supported by the Natural Science Foundation of Guizhou university(200101007)
文摘In this paper, we study the optimal control problem of nonlinear differentialinclusions with principle operator being pseudomonotone. First, we give some propertiesof solutions of certain evolution equations. Further, we prove the existence of admissibletrajectories for evolution inclusions. Then, we extend the Fillipov's selection theoremand discuss a general Lagrange type optimal control problem. Finally, we present anexample that demonstrates the appplicability of our results.
基金supported by the National Natural Science Foundation of China(Nos.11061018,11261029)the Youth Foundation of Lanzhou Jiaotong University(No.2011028)+1 种基金the Long Yuan Young Creative Talents Support Program(No.252003)the Joint Funds of the Gansu Provincial Natural Science Foundation of China(No.1212RJZA043)
文摘The authors investigate an inverse problem of determining the radiative coefficient in a degenerate parabolic equation from the final overspecified data. Being different from other inverse coefficient problems in which the principle coefficients are assumed to be strictly positive definite, the mathematical model discussed in this paper belongs to the second order parabolic equations with non-negative characteristic form, namely, there exists a degeneracy on the lateral boundaries of the domain. Based on the optimal control framework, the problem is transformed into an optimization problem and the existence of the minimizer is established. After the necessary conditions which must be satisfied by the minimizer are deduced, the uniqueness and stability of the minimizer are proved. By minor modification of the cost functional and some a priori regularity conditions imposed on the forward operator, the convergence of the minimizer for the noisy input data is obtained in this paper. The results can be extended to more general degenerate parabolic equations.
基金Project supported by the Fujian Provincial Natural Science Foundation of China (No. 2012J01011)Pan Jinglong’s Natural Science Foundation of Jimei University (No. ZC2010019)
文摘Consider the following Cauchy problem:where 1 〈 p 〈 2, 1 〈 m 〈 p_~11, and # is a a-finite measure in N. By the Moser's iteration method, the existence of the weak solution is obtained, provided that (M+1)N 〈 P. In mN+l contrast, if 〉 p, there is no solution to the Cauchy problem with an initial value δ(X), where 5(x) is the classical Dirac function.
基金supported by the National Natural Science Foundation of China (No. 11071203)the 973 High Performance Scientific Computation Research Program (No. 2005CB321703)+1 种基金the US-Israel Binational Science Foundation (No. 2006-151)the Israel Science Foundation (No. 32/09)
文摘In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.
文摘This paper focuses on nonlocal integral boundary value problems for elliptic differential-operator equations. Here given conditions guarantee that maximal regularity and Fredholmness in L_p spaces. These results are applied to the Cauchy problem for abstract parabolic equations, its infinite systems and boundary value problems for anisotropic partial differential equations in mixed L_p norm.
基金supported by National Science Foundation of ChinaFoundation for Talent Introduction of Guangdong Provincial University+2 种基金Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provincial Innovation Foundation for Postgraduate under Grant(1x2009B120)
文摘This paper studies variational discretization for the optimal control problem governed by parabolic equations with control constraints. First of all, the authors derive a priori error estimates where|||u - Uh|||L∞(J;L2(Ω)) = O(h2 + k). It is much better than a priori error estimates of standard finite element and backward Euler method where |||u- Uh|||L∞(J;L2(Ω)) = O(h + k). Secondly, the authors obtain a posteriori error estimates of residual type. Finally, the authors present some numerical algorithms for the optimal control problem and do some numerical experiments to illustrate their theoretical results.