Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(...Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.展开更多
Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the La...Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.展开更多
In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of...In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.展开更多
The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth so...The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth solitary wave,kink and anti-kink wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given.Also,all possible explicit exact parametric representations of the waves are presented.展开更多
文摘Aict f Finjte rmvedrig wave (M) so1uhons fOr the fOllowhg sechear syttem (I){u_t-u_(xx)+u^mv^p=0 u_t-v_(xx)+u^q=0 -∞<x<+∞,t>0,p,q>0,m≥0 are studied. SolutiOns to (I) of the fOrm u (x, t)=lt(ct--x), v(x, t)=v (cl--X) are called W soIutiOns if there exjstS a fwite ', such that u({)=v(j)=0 for t<{,':=ct--x. It is proVed that if Pq+nl<l, fOr any ed c thele erktS an FTW that is inhque up to phase transIahons and Is unbOunded, whena no rm ekist if pq+m> l. The asmpptohc weve profileS near the front as well as far from it are also determined. If I)q^m = l. the exjstence of travebe wave soluhons to (I) is proved. The plnof in Esqniruis's paper(1990) for the one m=0 co be sdriplified by using the methOd develOped in thjs paper.
文摘Linear and nonlinear evolutions of TS wave and high-order harmonic waves in boundary layers are studied based on the parabolic stability equation (PSE). Initial conditions are derived by the local method with the Landau expansion. The evolution process and characteristics of the disturbance amplitude and the velocity profile, etc. , especially stronger nonlinear effects, are computed by an efficient numerical method. Effects and regulations of different initial amplitudes, frequencies and pressure gradients on the evolution of disturbances are explored, which are directly relative to the stability and the transition in boundary layers. Simulation results are in good agreement with the data of the accuracy direct numerical simulation (DNS) using full Navier-Stokes equations.
基金supported by the National Natural Science Foundation of China (No. 11071203)the 973 High Performance Scientific Computation Research Program (No. 2005CB321703)+1 种基金the US-Israel Binational Science Foundation (No. 2006-151)the Israel Science Foundation (No. 32/09)
文摘In two-dimensional free-interface problems, the front dynamics can be modeled by single parabolic equations such as the Kuramoto-Sivashinsky equation (K-S). However, away from the stability threshold, the structure of the front equation may be more involved. In this paper, a generalized K-S equation, a nonlinear wave equation with a strong damping operator, is considered. As a consequence, the associated semigroup turns out to be analytic. Asymptotic convergence to K-S is shown, while numerical results illustrate the dynamics.
基金Supported by the National Natural Science Foundation of China under Grant No.11461022the Major Natural Science Foundation of Yunnan Province under Grant No.2014FA037
文摘The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth solitary wave,kink and anti-kink wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given.Also,all possible explicit exact parametric representations of the waves are presented.