The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement...The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement, scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The oxidation behavior of the alloy approximately follows a parabolic rate law. Moreover, annealing twins defect structure in matrix deteriorates the oxidation resistance of alloy due to the improvement of diffusion rates for alloying elements and oxygen atoms. At 800 °C, the microstructure is primarily composed of Ni O and Cr1.3Fe0.7O6 and the initial annealing twins structure is visible and Mo-rich phases are emerged to approach boundary of oxide scales. At 1000 °C, however, the morphology microstructure of oxide scales consists of oxide particle with fine Cr oxides and large Ni oxides by inlaying each other, whilst Mo-rich phases hardly appear closing to the interface of oxide scales.展开更多
Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under d...Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.展开更多
A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By intr...A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.展开更多
The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth so...The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth solitary wave,kink and anti-kink wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given.Also,all possible explicit exact parametric representations of the waves are presented.展开更多
基金Project(2013AA031004)supported by the National High-tech Research and Development Program of China
文摘The oxidation behavior of Hastelloy C-2000 alloy was investigated in air at 800 °C and 1000 °C for 100 h, respectively. Oxidation kinetics and oxide scales morphologies were examined by mass gain measurement, scanning electron microscopy(SEM), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The oxidation behavior of the alloy approximately follows a parabolic rate law. Moreover, annealing twins defect structure in matrix deteriorates the oxidation resistance of alloy due to the improvement of diffusion rates for alloying elements and oxygen atoms. At 800 °C, the microstructure is primarily composed of Ni O and Cr1.3Fe0.7O6 and the initial annealing twins structure is visible and Mo-rich phases are emerged to approach boundary of oxide scales. At 1000 °C, however, the morphology microstructure of oxide scales consists of oxide particle with fine Cr oxides and large Ni oxides by inlaying each other, whilst Mo-rich phases hardly appear closing to the interface of oxide scales.
基金supported by the Open Foundation of Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences (Grant No. 201503)the Key Research Program of the Chinese Academy of Sciences (Grant No. KZZD-EW-05-01)+1 种基金the National Natural Science Foundation of China (Grant No. 51579163)the Open Foundation of State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (Grant No. SKHL1426)
文摘Particle Image Velocimetry(PIV) technique was used to test the analogues of hyperconcentrated flow and dilute debris flow in an open flume. Flow fields, velocity profiles and turbulent parameters were obtained under different conditions. Results show that the flow regime depends on coarse grain concentration. Slurry with high fine grain concentration but lacking of coarse grains behaves as a laminar flow. Dilute debris flows containing coarse grains are generally turbulent flows. Streamlines are parallel and velocity values are large in laminar flows. However, in turbulent flows the velocity diminishes in line with the intense mixing of liquid and eddies occurring. The velocity profiles of laminar flow accord with the parabolic distribution law. When the flow is in a transitional regime, velocity profiles deviate slightly from the parabolic law. Turbulent flow has an approximately uniform distribution of velocity and turbulent kinetic energy. The ratio of turbulent kinetic energy to the kinetic energy of time-averaged flow is the internal cause determining the flow regime: laminar flow(k/K<0.1); transitional flow(0.1< k/K<1); and turbulent flow(k/K>1). Turbulent kinetic energy firstly increases with increasing coarse grain concentration and then decreases owing to the suppression of turbulence by the high concentration of coarse grains. This variation is also influenced by coarse grain size and channel slope. The results contribute to the modeling of debris flow and hyperconcentrated flow.
基金Project supported by the National Basic Research Program (973) of China (No 90505015)the National Natural Science Foundation of China (Nos 90816006 and 10732050)
文摘A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
基金Supported by the National Natural Science Foundation of China under Grant No.11461022the Major Natural Science Foundation of Yunnan Province under Grant No.2014FA037
文摘The generalized nonlinear Schrdinger equation with parabolic law nonlinearity is studied by using the factorization technique and the method of dynamical systems.From a dynamic point of view,the existence of smooth solitary wave,kink and anti-kink wave is proved and the sufficient conditions to guarantee the existence of the above solutions in different regions of the parametric space are given.Also,all possible explicit exact parametric representations of the waves are presented.