AIM: To examine the influence of dexamethasone on pancreatitis-associated protein (PAP) gene expression using both in vitro and in vivo models of acute pancreati- tis and to study how PAP gene expression correlates wi...AIM: To examine the influence of dexamethasone on pancreatitis-associated protein (PAP) gene expression using both in vitro and in vivo models of acute pancreati- tis and to study how PAP gene expression correlates with severity of pancreatitis. METHODS: In vitro, IL-6 stimulated pancreas acinar AR42J cells were cultured with increasing concentrations of dexamethasone and assayed for PAP expression (RT-PCR). In vivo , pancreatitis was induced in rats by retrograde injection of 40 g/L taurocholate into the pancreatic duct. Animals were pretreated with dexamethasone (2 mg/kg) daily or saline for 4 d. Pancreata and serum were harvested after 24 h and gene expression levels of PAPⅠ, Ⅱ and Ⅲ were measured by RT-PCR. Severity of pancreatitis was based on serum amylase, pancreatic wet weight, and histopathological score. RESULTS: In vitro, dexamethasone and IL-6 induced a marked transcription of PAPⅠ, Ⅱ and Ⅲ genes in AR42J cells at 24 h (P < 0.05 for all comparisons). In vivo, pancreas mRNA levels of PAPⅠ, Ⅱ or Ⅲ increased by 2.6-fold, 1.9-fold, and 1.3-fold respectively after dexa- methasone treatment, compared with saline treated ani- mals. Serum amylase levels and edema were significantly lower in the dexamethasone group compared with the saline group. Histopathologic evaluation revealed less inflammation and necrosis in pancreata obtained from dexamethasone treated animals (P < 0.05). CONCLUSION: Dexamethasone significantly decreases the severity of pancreatitis. The protective mechanism ofdexamethasone may be via upregulating PAP gene ex- pression during injury.展开更多
基金Supported by the National Institutes of Health, No. DK054511
文摘AIM: To examine the influence of dexamethasone on pancreatitis-associated protein (PAP) gene expression using both in vitro and in vivo models of acute pancreati- tis and to study how PAP gene expression correlates with severity of pancreatitis. METHODS: In vitro, IL-6 stimulated pancreas acinar AR42J cells were cultured with increasing concentrations of dexamethasone and assayed for PAP expression (RT-PCR). In vivo , pancreatitis was induced in rats by retrograde injection of 40 g/L taurocholate into the pancreatic duct. Animals were pretreated with dexamethasone (2 mg/kg) daily or saline for 4 d. Pancreata and serum were harvested after 24 h and gene expression levels of PAPⅠ, Ⅱ and Ⅲ were measured by RT-PCR. Severity of pancreatitis was based on serum amylase, pancreatic wet weight, and histopathological score. RESULTS: In vitro, dexamethasone and IL-6 induced a marked transcription of PAPⅠ, Ⅱ and Ⅲ genes in AR42J cells at 24 h (P < 0.05 for all comparisons). In vivo, pancreas mRNA levels of PAPⅠ, Ⅱ or Ⅲ increased by 2.6-fold, 1.9-fold, and 1.3-fold respectively after dexa- methasone treatment, compared with saline treated ani- mals. Serum amylase levels and edema were significantly lower in the dexamethasone group compared with the saline group. Histopathologic evaluation revealed less inflammation and necrosis in pancreata obtained from dexamethasone treated animals (P < 0.05). CONCLUSION: Dexamethasone significantly decreases the severity of pancreatitis. The protective mechanism ofdexamethasone may be via upregulating PAP gene ex- pression during injury.