Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalizati...Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.展开更多
Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accurac...Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.展开更多
Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical al...Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.展开更多
基金Supported by the National Natural Science Foundation of China(61473026,61104131)the Fundamental Research Funds for the Central Universities(JD1413)
文摘Alarm flood is one of the main problems in the alarm systems of industrial process. Alarm root-cause analysis and alarm prioritization are good for alarm flood reduction. This paper proposes a systematic rationalization method for multivariate correlated alarms to realize the root cause analysis and alarm prioritization. An information fusion based interpretive structural model is constructed according to the data-driven partial correlation coefficient calculation and process knowledge modification. This hierarchical multi-layer model is helpful in abnormality propagation path identification and root-cause analysis. Revised Likert scale method is adopted to determine the alarm priority and reduce the blindness of alarm handling. As a case study, the Tennessee Eastman process is utilized to show the effectiveness and validity of proposed approach. Alarm system performance comparison shows that our rationalization methodology can reduce the alarm flood to some extent and improve the performance.
文摘Flash floods are a natural disaster that occurs annually, especially in the mountainous terrain and steep slopes of northern Thailand. The current flood forecasting systems and tools are available but have low accuracy and efficiency. The numbers of rainfall and runoff stations are less, because the access to the station area is difficult. Additionally, the operation and maintenance costs are high. Hydrological modeling of a SWAT (Soil and Water Assessment Tool) was used in this study with the application of three days weather forecast from the NWP (numerical weather prediction), which provided temperature, relative humidity, rainfall, sunshine and wind speed. The data from NWP and SWAT were used to simulate the runoff from the Nan River in the last 10 years (2000-2010). It was found that the simulated flow rate for the main streams using data from NWP were higher than the observations. At the N64 and Nl stations, the ratios of the maximum simulated flow rate to the observations were equal to 108% and 118%, respectively. However, for the tributaries, it was found that the simulated flow rate using NWP data was lower than the observations, but, it was still within the acceptable range of not greater than 20%,6. At N65, D090201 and D090203 stations, the ratio of the maximum simulated flow rate were 90.0%, 83.0% and 86.0%, respectively. This was due to the rainfall from the NWP model being greater than the measured rainfall. The NWP rainfall was distributed all over the area while the rainfall data from the measurements were obtained from specific points. Therefore, the rain from the NWP model is very useful especially for the watershed areas without rain gauge stations. In summary, the data from the NWP can be used with the SWAT model and provides relatively sound results despite the value for the main river being slightly higher than the observed data. Consequently, the output can be used to create a flood map for flash flood warning in the area.
基金Supported by the National High Technology Research and Development Program of China(2013AA040701)
文摘Alarm systems play important roles for the safe and efficient operation of modern industrial plants. Critical alarms are configured with a higher priority and are safety related among many other alarms. If critical alarms can be predicted in advance, the operator will have more time to prevent them from happening. In this paper,we present a dynamic alarm prediction algorithm, which is a probabilistic model that utilizes alarm data from distributed control system, to calculate the occurrence probability of critical alarms. It accounts for the local interdependences among the alarms using the n-gram model, which occur because of the nonlinear relationships between variables. Finally, the dynamic alarm prediction algorithm is applied to an industrial case study.