-
题名TP-AS:一种面向长文本的两阶段自动摘要方法
被引量:12
- 1
-
-
作者
王帅
赵翔
李博
葛斌
汤大权
-
机构
国防科学技术大学信息系统工程重点实验室
地球空间信息技术协同创新中心
-
出处
《中文信息学报》
CSCD
北大核心
2018年第6期71-79,共9页
-
基金
国家自然科学基金(61402494
61402498
+1 种基金
71690233)
湖南省自然科学基金(2015JJ4009)
-
文摘
随着互联网上信息的爆炸式增长,如何有效提高知识获取效率变得尤为重要。文本自动摘要技术通过对信息的压缩和精炼,为知识的快速获取提供了很好的辅助手段。现有的文本自动摘要方法在处理长文本的过程中,存在准确率低的问题,无法达到令用户满意的性能效果。为此,该文提出一种新的两阶段的长文本自动摘要方法TP-AS,首先利用基于图模型的混合文本相似度计算方法进行关键句抽取,然后结合指针机制和注意力机制构建一种基于循环神经网络的编码器—解码器模型进行摘要生成。通过基于真实大规模金融领域长文本数据上的实验,验证了TP-AS方法的有效性,其自动摘要的准确性在ROUGE-1的指标下分别达到了36.6%(词)和33.9%(字符),明显优于现有其他方法。
-
关键词
自动文本摘要
自然语言处理
抽取和生成
循环神经网络
-
Keywords
automatic text summarization
natural language processing
extraction and abstraction
RNN
-
分类号
TP391
[自动化与计算机技术—计算机应用技术]
-