In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas...In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.展开更多
Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the met...Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.展开更多
基金financially supported by the National Natural Science Fund of China(Nos.51004003 and 51474009)Anhui Province Education Department Natural Science Fund Key Project of China(No.KJ2010A091)
文摘In order to solve the problems of top-coal inadequate destruction and large amounts of gas emission in mining extra thick and hard coal seam,this study investigated the pre-splitting for deep borehole blasting and gas pre-draining technologies on top coal.The mechanism of the technologies was systematically expounded based on hard top-coal cracks development obtained by numerical simulation and theoretical analysis.The results show that explosive blasting in the hard rock results in a large number of cracks and large displacement in the rock mass due to the effect of explosion stress.Meanwhile,the thick top-coal caves,and desorbing gas flows along the cracks improve gas extraction.Finally,the pre-splitting for deep borehole blasting and gas pre-draining technologies was applied in No.3802 working face of Shui Liandong Coal Mine,which increases monthly output in the face to 67.34 kt and the drained gas concentration to 86.2%.The drained gas average concentration from each borehole reaches 40%,and the effect is remarkable.
文摘Prediction of methane emissions at the stage of longwall planning constitutes the basis for the determination of the appropriate method and parameters of ventilation and selection of prevention means including the methane drainage technol- ogy. The growth of methane saturation of coal seams with the extraction depth, with simultaneously increasing output concen- tration, contributes to the increase of the quantity of methane emitted into longwall areas. The subject matter of the article has been directed at the predicted quantity of methane emissions into planned longwalls with roof caving in the layer of seams adjacent to the roof of large thickness. The performed prognostic calculations of methane emissions into the longwall working were referred to two sources, i.e. methane liberated during coal mining by means of a cutter-loader and methane originating from the degasification of the floor layer destressed by the longwall conducted in the close-to-roof layer. The calculations of predictions allow to refer to the planned longwall, on account of the emitting methane, with possible and safe output quantity. Planning of extraction in the close-to-roof layer of a seam of large thickness with roof caving is especially important in con- ditions of increasing methane saturation with the depth of deposition and should be preceded by a prognostic analysis for de- termining the extraction possibilities of the planned longwall.