由于可变速双馈抽水蓄能机组(doubly-fed pumped storage unit, DFPSU)的运行不再受到静稳极限的限制,其吸收无功功率的进相能力相较于传统同步发电机来讲得到了增强,但整体调节能力又将受限于定子绕组温升、转子绕组温升和最大转子电...由于可变速双馈抽水蓄能机组(doubly-fed pumped storage unit, DFPSU)的运行不再受到静稳极限的限制,其吸收无功功率的进相能力相较于传统同步发电机来讲得到了增强,但整体调节能力又将受限于定子绕组温升、转子绕组温升和最大转子电压。本文采用了更有利于DFPSU功率分析的Γ型等效电路,将机组运行过程中的定转子功率、损耗功率重新组合分析,得出了限制机组运行功率极限的主要因素。根据理论推导和DFPSU机组实际参数首先画出了以定子电流和转子电流极限为边界的P-Q圆图,进而专门探究双馈电机最大转子电压极限在不同转差条件下的运行边界和无功调节极限,分析了转差率s和转子电压极限圆图之间的关系。最后通过在MATLAB/Simulink中搭建仿真模型验证了DFPSU无功调节极限理论边界的正确性,根据某可变速抽水蓄能机组实际参数的仿真结果,发现当转差率较大时转子电压极限将会成为限制无功调节范围的关键因素。展开更多
文摘由于可变速双馈抽水蓄能机组(doubly-fed pumped storage unit, DFPSU)的运行不再受到静稳极限的限制,其吸收无功功率的进相能力相较于传统同步发电机来讲得到了增强,但整体调节能力又将受限于定子绕组温升、转子绕组温升和最大转子电压。本文采用了更有利于DFPSU功率分析的Γ型等效电路,将机组运行过程中的定转子功率、损耗功率重新组合分析,得出了限制机组运行功率极限的主要因素。根据理论推导和DFPSU机组实际参数首先画出了以定子电流和转子电流极限为边界的P-Q圆图,进而专门探究双馈电机最大转子电压极限在不同转差条件下的运行边界和无功调节极限,分析了转差率s和转子电压极限圆图之间的关系。最后通过在MATLAB/Simulink中搭建仿真模型验证了DFPSU无功调节极限理论边界的正确性,根据某可变速抽水蓄能机组实际参数的仿真结果,发现当转差率较大时转子电压极限将会成为限制无功调节范围的关键因素。