Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. S...Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. Since then it has been developed and applied to several different fields. In this paper we will first give a brief introduction. Then give a survey on its applications to dynamic systems, to logic, to differential geometry, to abstract algebra, respectively.展开更多
基金Supported partly by National Natural Science Foundation of China under Grant No. 60221301 and 60334040 .Dedicated to Academician Han-Fu Chen on the occasion of his 70th birthday.
文摘Semi-tensor product of matrices is a generalization of conventional matrix product for the case when the two factor matrices do not meet the dimension matching condition. It was firstly proposed about ten years ago. Since then it has been developed and applied to several different fields. In this paper we will first give a brief introduction. Then give a survey on its applications to dynamic systems, to logic, to differential geometry, to abstract algebra, respectively.