Both static and kinematic testings are investigated by using IGS 5rain, 30s and 5s-interval precise satellite clock prod- ucts in precise point positioning (PPP) solution. Test results show that the sampling rate of...Both static and kinematic testings are investigated by using IGS 5rain, 30s and 5s-interval precise satellite clock prod- ucts in precise point positioning (PPP) solution. Test results show that the sampling rate oflGS satellite clock has very little effect on the static PPP solution. All the three types of sampling intervals of precise satellite clock can satisfy mm-cm level of positioning accuracy; higher sampling rate has no significant improvement for PPP solution. However, sampling rate of satellite clock has a significant impact on the PPP solution in kinematic PPP. The higher the interval of satellite clock, the better the accuracy achieved. The accuracy of kinematic PPP achieved by using 30s-interval precise satellite clock is improved by nearly 30-50 percent with re- spect to the solution by using 5min-interval precise satellite clock, but using 5s and 30s-interval satellite clock can almost produce the same accuracy of kinematic solution. Moreover, the use of precise satellite clock products from different analysis centers may also produce more or less effect on the PPP solution.展开更多
基金Supported by the Scientific Research sustentation fund for Young Teachers in the Higher Education Institutions of Anhui Province(Grant No.2005jq1133)
基金Supported by the National Natural Science Foundation of China(No.40874017)the Program of Wuhan ChenGuang Plan(No.200850731375)
文摘Both static and kinematic testings are investigated by using IGS 5rain, 30s and 5s-interval precise satellite clock prod- ucts in precise point positioning (PPP) solution. Test results show that the sampling rate oflGS satellite clock has very little effect on the static PPP solution. All the three types of sampling intervals of precise satellite clock can satisfy mm-cm level of positioning accuracy; higher sampling rate has no significant improvement for PPP solution. However, sampling rate of satellite clock has a significant impact on the PPP solution in kinematic PPP. The higher the interval of satellite clock, the better the accuracy achieved. The accuracy of kinematic PPP achieved by using 30s-interval precise satellite clock is improved by nearly 30-50 percent with re- spect to the solution by using 5min-interval precise satellite clock, but using 5s and 30s-interval satellite clock can almost produce the same accuracy of kinematic solution. Moreover, the use of precise satellite clock products from different analysis centers may also produce more or less effect on the PPP solution.