In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is...In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.展开更多
This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the ...This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.展开更多
基金ACKNOWLEDGEMENT This work was supported by National Natural Science Foundation of China (Grant No. 61231008), National Basic Research Program of China (973 Program) (Grant No. 2009CB320404), Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT0852), and the 111 Project (Grant No. B08038).
文摘In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks.
文摘This paper puts forward adaptive anti collision algorithm based on two fork tree decomposition. New search algorithm built on the basis of binary-tree algorithm, using the uniqueness of the label EPC, to estimate the distribution of label by slot allocation, the huge and complicated two fork tree is decomposed into several simple binary-tree by search the collision slots for binary-tree, so, it can simplifies the search process. The algorithm fully considers4 important performance parameters of the reader paging times, transmission delay, energy consumption and throughput label, the simulation results show that, the improved anti-collision algorithm is obviously improved performance than other two fork tree algorithm, it is more suitable for RFID anti-collision protocols.