In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
Non-equidistant sparse antenna arrays constructed on the basis of Latin squares are considered. A method for their construction and a synthesis algorithm are proposed,and the properties of two-dimensional antennas bas...Non-equidistant sparse antenna arrays constructed on the basis of Latin squares are considered. A method for their construction and a synthesis algorithm are proposed,and the properties of two-dimensional antennas based on them,which ensure,at a high degree of rarefaction,a sufficiently small lateral radiation are studied. The features and main characteristics of such antennas are studied.展开更多
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘Non-equidistant sparse antenna arrays constructed on the basis of Latin squares are considered. A method for their construction and a synthesis algorithm are proposed,and the properties of two-dimensional antennas based on them,which ensure,at a high degree of rarefaction,a sufficiently small lateral radiation are studied. The features and main characteristics of such antennas are studied.