Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,...Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.展开更多
Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mech...Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mechanisms that influence dimensional accuracy,including local cross-sectional deformations such as suck-in and volume conservation effects,along with global deformations such as springback.An analytical model was developed to determine the particular influence of different material,geometry and process parameters on dimensional variability of bent components.The results were discussed in terms of overall process capability(Cp) and associated process windows.The results show that different governing mechanisms prevail in various bending operations,meaning that attention has to be placed on controlling those process parameters that really are important to part quality in each specific case.Several strategies may be defined for reducing variability.One alternative may be to design more robust process and tool technology that reduce the effect of upstream parameters on dimensional variability of the formed part.The results show that optimal tool design and technology may in specific cases improve the dimensional accuracy of a formed part.Based on the findings discussed herein,it is concluded that advances in industrial bending operations require focus on improving the understanding of mechanical mechanisms,including models and parameter development,new technology developments,including process,tool,measurement and control capabilities,and process discipline at the shop floor,combined with a basic philosophy of controlling process parameters rather than part attributes.展开更多
基金Project(51175022)supported by the National Natural Science Foundation of ChinaProject(51318040315)supported by the National Defense Pre-research of China+1 种基金Project(09000114)supported by Initial Funding for the Doctoral Program of BIGCProject(E-a-2014-13)supported by BIGC Key Project
文摘Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally.
文摘Recent new technology developments were presented in the field of industrial bending operations,including flexible stretch forming and 3D rotary stretch forming.Attempts were made to give an overview of different mechanisms that influence dimensional accuracy,including local cross-sectional deformations such as suck-in and volume conservation effects,along with global deformations such as springback.An analytical model was developed to determine the particular influence of different material,geometry and process parameters on dimensional variability of bent components.The results were discussed in terms of overall process capability(Cp) and associated process windows.The results show that different governing mechanisms prevail in various bending operations,meaning that attention has to be placed on controlling those process parameters that really are important to part quality in each specific case.Several strategies may be defined for reducing variability.One alternative may be to design more robust process and tool technology that reduce the effect of upstream parameters on dimensional variability of the formed part.The results show that optimal tool design and technology may in specific cases improve the dimensional accuracy of a formed part.Based on the findings discussed herein,it is concluded that advances in industrial bending operations require focus on improving the understanding of mechanical mechanisms,including models and parameter development,new technology developments,including process,tool,measurement and control capabilities,and process discipline at the shop floor,combined with a basic philosophy of controlling process parameters rather than part attributes.