The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samp...The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samples were cut from the fatigued samples, named as L-sample and H-sample respectively, and the O-sample was cut from original rolled AZ31 alloy. The EBSD and TEM were used to characterize the microstructure. It is found that the twinning-detwinning was the main deformation mechanism in high stress fatigue test, while dislocation slipping was dominant in low stress fatigue test. After fatigue tests, the average grain size of the L-sample and H-sample decreased to 4.71 and 5.33 μm, and the tensile and yield strength of the L-sample and H-sample increased slightly. By analyzing SEM images, the ultimate fracture region of the L-sample consisted of dimples, while there were many microvoids in the ultimate fracture region of the H-sample. Consequently, the tensile behaviors of fatigued magnesium have a close relationship with microstructure.展开更多
The effects of beryllium (Be) on the microstructure, hardness and tensile properties of A380 aluminum alloy were investigated. The base and Be-containing A380 alloys were conventionally cast in a ductile iron mold. Th...The effects of beryllium (Be) on the microstructure, hardness and tensile properties of A380 aluminum alloy were investigated. The base and Be-containing A380 alloys were conventionally cast in a ductile iron mold. The microstructure evolution was investigated using SEM and optical microscope. The mechanical properties were assessed using tensile and hardness tests, finally the rapture surfaces of the used samples were studied to reveal the fracture mechanism in the presence of Be. The results revealed that the plateletβ intermetallic phases were transformed into relatively harmless Chinese script Be?Fe phase and eutectic Si phases changed from flake-like particles into fine ones. The corresponding ultimate tensile strength (UTS) and elongation values increased from 270 MPa to 295 MPa and 3.7% to 4.7%, respectively. Additionally, the hardness of A380 alloy decreased continuously with increasing Be content. While the fracture surfaces of the unmodified A380 alloy tensile samples showed a clear brittle fracture nature, while finer dimple and fewer brittle cleavage surfaces were seen in the alloys with Be addition. Moreover, in the presence of Be, due to the refined phases, there has been a decrease in the values of hardness.展开更多
The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testi...The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.展开更多
基金Projects(51271208,51071183,50890170)supported by the National Natural Science Foundation of ChinaProject(2010CB631004)supported by the National Basic Research Program of China
文摘The relationship between microstructure and tensile behaviors of fatigued AZ31 magnesium alloy was investigated. Axial fatigue tests were performed on PLG-100 fatigue machine at stresses of 50 and 90 MPa. Tensile samples were cut from the fatigued samples, named as L-sample and H-sample respectively, and the O-sample was cut from original rolled AZ31 alloy. The EBSD and TEM were used to characterize the microstructure. It is found that the twinning-detwinning was the main deformation mechanism in high stress fatigue test, while dislocation slipping was dominant in low stress fatigue test. After fatigue tests, the average grain size of the L-sample and H-sample decreased to 4.71 and 5.33 μm, and the tensile and yield strength of the L-sample and H-sample increased slightly. By analyzing SEM images, the ultimate fracture region of the L-sample consisted of dimples, while there were many microvoids in the ultimate fracture region of the H-sample. Consequently, the tensile behaviors of fatigued magnesium have a close relationship with microstructure.
基金University of Tehran and Graduate University of Advanced Technology for financial and mental support
文摘The effects of beryllium (Be) on the microstructure, hardness and tensile properties of A380 aluminum alloy were investigated. The base and Be-containing A380 alloys were conventionally cast in a ductile iron mold. The microstructure evolution was investigated using SEM and optical microscope. The mechanical properties were assessed using tensile and hardness tests, finally the rapture surfaces of the used samples were studied to reveal the fracture mechanism in the presence of Be. The results revealed that the plateletβ intermetallic phases were transformed into relatively harmless Chinese script Be?Fe phase and eutectic Si phases changed from flake-like particles into fine ones. The corresponding ultimate tensile strength (UTS) and elongation values increased from 270 MPa to 295 MPa and 3.7% to 4.7%, respectively. Additionally, the hardness of A380 alloy decreased continuously with increasing Be content. While the fracture surfaces of the unmodified A380 alloy tensile samples showed a clear brittle fracture nature, while finer dimple and fewer brittle cleavage surfaces were seen in the alloys with Be addition. Moreover, in the presence of Be, due to the refined phases, there has been a decrease in the values of hardness.
基金supported by the German Aerospace Center (DLR) project “Next Generation Car”
文摘The dynamic tensile behavior of twin-roll cast-rolled and hot-rolled AZ31B magnesium alloy was characterized over strainrates ranging from 0.001 to 375 s^-1 at room temperature using an elaborate dynamic tensile testing method, and the relationshipbetween its mechanical properties and microstructures. It is observed that the sheet has a strong initial basal fiber texture andmechanical twinning becomes prevalent to accommodate the high-rate deformation. The yield strength and ultimate tensile strengthmonotonically increase with increasing the strain rate, while the strain hardening exponent proportionally decreases with increasingthe strain rate due to twinning-induced softening. The total elongation at fracture distinctly decreases as the strain rate increasesunder quasi-static tension, while the effect of strain rate on the total elongation is not distinct under dynamic tension. Fractographicanalysis using a scanning electron microscope reveals that the fracture is a mixed mode of ductile and brittle fracture.