Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties...Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties of the nickel foams including yield strength, elastic modulus, energy absorption density and energy absorption efficiency were calculated accurately. The results show that the compressive properties of yield strength, elastic modulus and energy absorption density increase with the increase of relative density of nickel foams. The compressive properties are sensitive to the pre-stretching degree, and the values of yield strength, elastic modulus and energy absorption density decrease with the increase of pre-stretching degree. However, the energy absorption efficiency at the densification strain state exhibits the independence of relative density and pre-stretching degree. The value of energy absorption efficiency reaches its peak when the strain is at the end of the collapse plateau region.展开更多
The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target o...The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit small mining company展开更多
Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt...Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt was made to predict the performance, particularly low-temperature cracking resistance characteristics of CIR mixtures. These were prepared with the mix design procedure developed at the URI (University of Rhode Island) for the FHWA (Federal Highway Administration) to reduce wide variations in the application of CIR mixtures production. This standard was applied to RAP (reclaimed asphalt pavement) to produce CIR mixtures with CSS-Ih asphalt emulsion as the additive. By adjusting the number of gyrations of the SGC (Superpave gyratory compactor) for compaction, the field density of 130 pcf was represented accurately. To secure a base line, HMA (hot mix asphalt) samples were produced according to the Superpave volumetric mix design procedure. The specimens were tested using the IDT (indirect tensile) tester according to the procedure of AASHTO T 322 procedure at temperatures of-20, -10 and 0 ℃ (-4, 14, and 32°F, respectively). The obtained results for the creep compliance and tensile strength were used as input data for the MEPDG (mechanistic empirical pavement design guide). The analysis results indicated that no thermal or low-temperature cracking is expected over the entire analysis period of 20 years for both HMA and CIR mixtures. Thus, it appears that CIR is a sustainable rehabilitation technique which is also suitable for colder climates, and it is recommended to conduct further investigation of load-related distresses such as rutting and fatigue cracking.展开更多
基金Project supported by the 2015 Shandong Province Project of Outstanding Subject Talent Group
文摘Open-cell nickel foams with different relative densities and pre-stretching degrees were subjected to room temperature quasi-static compressive tests to explore their compressive properties. The compressive properties of the nickel foams including yield strength, elastic modulus, energy absorption density and energy absorption efficiency were calculated accurately. The results show that the compressive properties of yield strength, elastic modulus and energy absorption density increase with the increase of relative density of nickel foams. The compressive properties are sensitive to the pre-stretching degree, and the values of yield strength, elastic modulus and energy absorption density decrease with the increase of pre-stretching degree. However, the energy absorption efficiency at the densification strain state exhibits the independence of relative density and pre-stretching degree. The value of energy absorption efficiency reaches its peak when the strain is at the end of the collapse plateau region.
文摘The develop actuality and direction of FRP(fibre glass reinforced plastics) bolt in the world are analyzed The new type structure of FRP bolt was designed Trial data indicate that, all kinds of capability target of this FRP bolt all achieve and exceed the country standard, substitute present metal bolt,wood bolt and bamboo bolt and other side bolt, it can gain magnitude technology and economy benefit FRP bolt mechanization product line produce efficiency is high, its throughput a day are 750 base, this can meet demand of hit small mining company
文摘Pavement rehabilitation and reconstruction methods with CIR (cold in-place recycling) are alternatives that can effectively reduce the high stresses and waste produced by conventional pavement strategies. An attempt was made to predict the performance, particularly low-temperature cracking resistance characteristics of CIR mixtures. These were prepared with the mix design procedure developed at the URI (University of Rhode Island) for the FHWA (Federal Highway Administration) to reduce wide variations in the application of CIR mixtures production. This standard was applied to RAP (reclaimed asphalt pavement) to produce CIR mixtures with CSS-Ih asphalt emulsion as the additive. By adjusting the number of gyrations of the SGC (Superpave gyratory compactor) for compaction, the field density of 130 pcf was represented accurately. To secure a base line, HMA (hot mix asphalt) samples were produced according to the Superpave volumetric mix design procedure. The specimens were tested using the IDT (indirect tensile) tester according to the procedure of AASHTO T 322 procedure at temperatures of-20, -10 and 0 ℃ (-4, 14, and 32°F, respectively). The obtained results for the creep compliance and tensile strength were used as input data for the MEPDG (mechanistic empirical pavement design guide). The analysis results indicated that no thermal or low-temperature cracking is expected over the entire analysis period of 20 years for both HMA and CIR mixtures. Thus, it appears that CIR is a sustainable rehabilitation technique which is also suitable for colder climates, and it is recommended to conduct further investigation of load-related distresses such as rutting and fatigue cracking.