In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
Trenching is a primary technique on paleoseismology to reveal evidence of surface deformation produced by large earthquakes.A good trenching site requires completeness of geologic recording on paleoseismic events and ...Trenching is a primary technique on paleoseismology to reveal evidence of surface deformation produced by large earthquakes.A good trenching site requires completeness of geologic recording on paleoseismic events and corresponding reliable dating from radiocarbon samples.Based on three-dimension trenching,we show a structure of a small triangular pull-apart basin at the Daqingliangzi section on the Zemuhe fault,then explore interrelation between paleoseismic surface rupturing and evolution of the pull-apart basin,and give a corresponding identification model.Sedimentary boundary of the pull-apart basin is tightly bounded by two branch faults,which produced multiple paleoseismic events with deformation of some large fissures in sequence.Strata are thinner at north of the pull-apart basin,however thicker at south.These above characteristics show that evolution of the pull-apart basin is a continuous sedimentation process accompanying extensional deformation produced by multiple paleoseismic events.Small pull-apart basins are favorable sites for trenching and paleoseismic study on active strike-slip faults.展开更多
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金supported by Special Foundation of China Earthquake Administration(Grant No.200808016)National Basic Research Program of China(Grant No.2004CB418401)
文摘Trenching is a primary technique on paleoseismology to reveal evidence of surface deformation produced by large earthquakes.A good trenching site requires completeness of geologic recording on paleoseismic events and corresponding reliable dating from radiocarbon samples.Based on three-dimension trenching,we show a structure of a small triangular pull-apart basin at the Daqingliangzi section on the Zemuhe fault,then explore interrelation between paleoseismic surface rupturing and evolution of the pull-apart basin,and give a corresponding identification model.Sedimentary boundary of the pull-apart basin is tightly bounded by two branch faults,which produced multiple paleoseismic events with deformation of some large fissures in sequence.Strata are thinner at north of the pull-apart basin,however thicker at south.These above characteristics show that evolution of the pull-apart basin is a continuous sedimentation process accompanying extensional deformation produced by multiple paleoseismic events.Small pull-apart basins are favorable sites for trenching and paleoseismic study on active strike-slip faults.