Some sharp upper bounds of Laplacian spectral radius of trees in terms of order,diameter,pendant vertex number,covering number,edge covering number or total independence number are given.And the ninth to thirteenth la...Some sharp upper bounds of Laplacian spectral radius of trees in terms of order,diameter,pendant vertex number,covering number,edge covering number or total independence number are given.And the ninth to thirteenth largest values of Laplacian spectral radius over the class of trees on a given order are also given.展开更多
The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the ...The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the graphs for which the bounds are attained. Moreover, some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs can be deduced from the bounds.展开更多
Let :T2k+1 be the set of trees on 2k+ 1 vertices with nearly perfect matchings, and let S2k+2 be the set of trees on 2k + 2 vertices with perfect matchings. The largest Laplacian spectral radii of trees in :T2k...Let :T2k+1 be the set of trees on 2k+ 1 vertices with nearly perfect matchings, and let S2k+2 be the set of trees on 2k + 2 vertices with perfect matchings. The largest Laplacian spectral radii of trees in :T2k+l and S2k+2 and the corresponding trees were given by Guo (2003). In this paper, the authors determine the second to the sixth largest Laplacian spectral radii among all trees in T2k+1 and give the corresponding trees.展开更多
基金Supported by National Natural Science Foundation of China(10871204)
文摘Some sharp upper bounds of Laplacian spectral radius of trees in terms of order,diameter,pendant vertex number,covering number,edge covering number or total independence number are given.And the ninth to thirteenth largest values of Laplacian spectral radius over the class of trees on a given order are also given.
基金supported by the National Natural Science Foundation of China(Nos.11101027,11071115,10971114,10990011,11171097)the Fundamental Research Funds for the Central Universities of China(No.2011JBM136)
文摘The weighted graphs, where the edge weights are positive numbers, are considered. The authors obtain some lower bounds on the spectral radius and the Laplacian spectral radius of weighted graphs, and characterize the graphs for which the bounds are attained. Moreover, some known lower bounds on the spectral radius and the Laplacian spectral radius of unweighted graphs can be deduced from the bounds.
基金supported by the National Natural Science Foundation of China under Grant No. 10331020.
文摘Let :T2k+1 be the set of trees on 2k+ 1 vertices with nearly perfect matchings, and let S2k+2 be the set of trees on 2k + 2 vertices with perfect matchings. The largest Laplacian spectral radii of trees in :T2k+l and S2k+2 and the corresponding trees were given by Guo (2003). In this paper, the authors determine the second to the sixth largest Laplacian spectral radii among all trees in T2k+1 and give the corresponding trees.