期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于差分隐私的个性化服务推荐算法 被引量:1
1
作者 李晓会 陈潮阳 +1 位作者 张兴 伊华伟 《现代电子技术》 2022年第4期83-88,共6页
推荐系统存在用户隐私安全性低、推荐服务质量差的问题。为此,文中提出一种基于差分隐私的个性化服务推荐算法DPk⁃median。该算法针对推荐系统服务器中生成的推荐列表,首先利用k⁃median聚类算法将推荐数据中具有相同属性的数据进行聚类... 推荐系统存在用户隐私安全性低、推荐服务质量差的问题。为此,文中提出一种基于差分隐私的个性化服务推荐算法DPk⁃median。该算法针对推荐系统服务器中生成的推荐列表,首先利用k⁃median聚类算法将推荐数据中具有相同属性的数据进行聚类;然后根据不同簇的风险级别,添加相应的拉普拉斯噪声机制,同一簇中的隐私预算参数是相同的,在保证隐私的前提下,可合理控制噪声的加入并提高噪声的利用率,保证推荐的质量损失减小,同时增加算法的执行效率。相关实验结果表明,与以往的基于差分隐私的个性化服务推荐系统相比,文中所提出的算法在保证系统安全性的同时,提高了服务推荐的质量和算法的执行效率。 展开更多
关键词 个性化服务推荐 差分隐私 数据聚类 拉普拉斯噪声机制 隐私预算 推荐服务质量 风险级别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部