We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove ...We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property.展开更多
In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and ...In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.展开更多
This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler fu...This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.展开更多
文摘We study two-weight norm inequality for imaginary powers of a Laplace operator in R^n, n ≥ 1, especially from weighted Lebesgue space Lv^p(R^n) to weighted Lebesgue space Lμ^p(R^n), where 1 〈 p 〈 ∞. We prove that the two-weighted norm inequality holds whenever for some t 〉 1, (μ^t, v^t) ∈ Ap, or if (μ, v) ∈Ap, where μ and v^-1/(p-1) satisfy the growth condition and reverse doubling property.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2014CB047100)the National Natural Science Foundation of China(Grant No.41372316)
文摘In this study, numerical manifold method(NMM) coupled with non-uniform rational B-splines(NURBS) and T-splines in the context of isogeometric analysis is proposed to allow for the treatments of complex geometries and local refinement. Computational formula for a 9-node NMM based on quadratic B-splines is derived. In order to exactly represent some common free-form shapes such as circles, arcs, and ellipsoids, quadratic non-uniform rational B-splines(NURBS) are introduced into NMM. The coordinate transformation based on the basis function of NURBS is established to enable exact integration for the manifold elements containing those shapes. For the case of crack propagation problems where singular fields around crack tips exist, local refinement technique by the application of T-spline discretizations is incorporated into NMM, which facilitates a truly local refinement without extending the entire row of control points. A local refinement strategy for the 4-node mathematical cover mesh based on T-splines and Lagrange interpolation polynomial is proposed. Results from numerical examples show that the 9-node NMM based on NURBS has higher accuracies. The coordinate transformation based on the NURBS basis function improves the accuracy of NMM by exact integration. The local mesh refinement using T-splines reduces the number of degrees of freedom while maintaining calculation accuracy at the same time.
基金Supported by National Natural Science Foundation of China under Grant Nos.61673008,11261010,11101126Project of High–Level Innovative Talents of Guizhou Province([2016]5651)+2 种基金Natural Science and Technology Foundation of Guizhou Province(J[2015]2025 and J[2015]2026)125 Special Major Science and Technology of Department of Education of Guizhou Province([2012]011)Natural Science Foundation of the Education Department of Guizhou Province(KY[2015]482)
文摘This paper is concerned with fractional-order bidirectional associative memory(BAM) neural networks with time delays. Applying Laplace transform, the generalized Gronwall inequality and estimates of Mittag–Leffler functions, some sufficient conditions which ensure the finite-time stability of fractional-order bidirectional associative memory neural networks with time delays are obtained. Two examples with their simulations are given to illustrate the theoretical findings. Our results are new and complement previously known results.