To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending a...To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending and delivery subproblem.To accelerate the convergence of Lagrange multipliers,some auxiliary constraints are added in the blending and delivery subproblem.A speed-up scheme is presented to increase the efficiency for solving the production subproblem.An initialization scheme of Lagrange multipliers and a heuristic algorithm to find feasible solutions are designed.Computational results on three cases with different lengths of time horizons and different numbers of orders show that the proposed Lagrangian scheme is effective and efficient.展开更多
An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and gr...An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.展开更多
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivati...In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.展开更多
The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system...The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.展开更多
基金Supported by the National Natural Science Foundation of China(61273039,21276137)the National Science Fund for Distinguished Young Scholars of China(61525304)
文摘To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending and delivery subproblem.To accelerate the convergence of Lagrange multipliers,some auxiliary constraints are added in the blending and delivery subproblem.A speed-up scheme is presented to increase the efficiency for solving the production subproblem.An initialization scheme of Lagrange multipliers and a heuristic algorithm to find feasible solutions are designed.Computational results on three cases with different lengths of time horizons and different numbers of orders show that the proposed Lagrangian scheme is effective and efficient.
文摘An accurate determination of intedaminar transversal stresses in composite multilayered plates, especially near free-edge, is of great importance in the study of inter-ply damage modes, mainly in the initiation and growth of delamination. In this paper, interlaminar stresses are determined by layer-wise mixed finite element model. Each layer is analyzed as an isolated one where the displacement continuity is ensured by means of Lagrange multipliers (which represent the statics variables). This procedure allows the authors to work with any single plate model, obtaining the interlaminar stresses directly without loss of precision. The FSDT (first shear deformation theory) with transverse normal strain effects included is assumed in each layer, but Lagrange polynomials are used to describe the kinematic instead of Taylor's polynomial functions of the thickness coordinates, as is common. This expansion allows the authors to pose the interlaminar displacements compatibility simpler than the second one. The in-plane domain of the plate is discretized by four-node quadrilateral elements, both to the field of displacement and to the Lagrange multipliers. The mixed interpolation of tensorial components technique is applied to avoid the shear-locking in the finite element model. Several examples were carried out and the results have been satisfactorily compared with those available in the literature.
基金supported by National Natural Science Foundation of China(Grant Nos.11271157,11371171 and 11471141)the Program for New Century Excellent Talents in University of Ministry of Education of China
文摘In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.
基金Supported by National Natural Science Foundation of China under Grant Nos.11275207 and 11690022
文摘The Hamiltonian analysis for a 3-dimensional connection dynamics of o(1, 2), spanned by {L-+, L-2, L+2) instead of {Lol, L02, L12}, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bafiados-Teitelboim-Zanelli (BTZ) spaeetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate.