To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending a...To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending and delivery subproblem.To accelerate the convergence of Lagrange multipliers,some auxiliary constraints are added in the blending and delivery subproblem.A speed-up scheme is presented to increase the efficiency for solving the production subproblem.An initialization scheme of Lagrange multipliers and a heuristic algorithm to find feasible solutions are designed.Computational results on three cases with different lengths of time horizons and different numbers of orders show that the proposed Lagrangian scheme is effective and efficient.展开更多
In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two ...In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.展开更多
基金Supported by the National Natural Science Foundation of China(61273039,21276137)the National Science Fund for Distinguished Young Scholars of China(61525304)
文摘To address large scale industrial processes,a novel Lagrangian scheme is proposed to decompose a refinery scheduling problem with operational transitions in mode switching into a production subproblem and a blending and delivery subproblem.To accelerate the convergence of Lagrange multipliers,some auxiliary constraints are added in the blending and delivery subproblem.A speed-up scheme is presented to increase the efficiency for solving the production subproblem.An initialization scheme of Lagrange multipliers and a heuristic algorithm to find feasible solutions are designed.Computational results on three cases with different lengths of time horizons and different numbers of orders show that the proposed Lagrangian scheme is effective and efficient.
文摘In this paper, the authors propose a computational procedure by using fuzzy approach to fred the optimal solution of quadratic programming problems. The authors divide the calculation of the optimal solution into two stages. In the first stage the authors determine the unconstrained minimization and check its feasibility. The second stage, the authors explore the feasible region from initial point to another point until the authors get the optimal point by using Lagrange multiplier. A numerical example is included to support as illustration of the paper.