Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor...Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor system in aero-engines. The motion equations are derived through Lagrange method. The relationship between structural and mechanics characteristics parameters are built up. Finally, the dynamic influence of bearing misalignment on rotor system are divided into three kinds: additional rotor bending rigidity, additional bearing misalignment excitation force and additional imbalance. The equations suggest that additional imbalance excitation force activates the nonlinearity on rotor system and an additional 2x excitation force might appear.展开更多
Sloshing has a widespread application in many industries including automotive, aerospace, ship building and motorcycle manufacturing. The goals of sloshing simulation is to first study the sloshing pattern and then im...Sloshing has a widespread application in many industries including automotive, aerospace, ship building and motorcycle manufacturing. The goals of sloshing simulation is to first study the sloshing pattern and then improve the tank design to reduce noise levels, stresses on the structure and optimize the baffle arrangements. In this project simulation of the fluid in tank is studied and the design modification with baffle plate is considered to minimize the sloshing phenomena using Arbitrary Langrangian Eulerian (ALE) method. Also it is explained that there is need to analyze the sloshing phenomena in detail. Arbitrary Langrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. Fuel slosh can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a sloshing resonance is generated. These sloshing events can in turn affect the overall performance 0fthe parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh can be used to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level.展开更多
An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form...An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form,these invariant manifolds can be approximated arbitrarily closely as Taylor series around Lagrange points.These invariant manifolds are represented by algebraic equations containing the state variables only without the help of time.Thus the so-called geometric structure of these invariant manifolds is obtained.The stable,unstable and center manifolds are tangent to the stable,unstable and center eigenspaces,respectively.As an example of applicability,the invariant manifolds of L 1 point of the Sun-Earth system are considered.The stable and unstable manifolds are symmetric about the line from the Sun to the Earth,and they both reach near the Earth,so that the low energy transfer trajectory can be found based on the stable and unstable manifolds.The periodic or quasi-periodic orbits,which are chosen as nominal arrival orbits,can be obtained based on the center manifold.展开更多
文摘Based on the structural and mechanics analysis of aero-engines rotor system, the dynamic model of the flexible rotor system with multi-supports are presented in order to solve the bearing misalignment problem of rotor system in aero-engines. The motion equations are derived through Lagrange method. The relationship between structural and mechanics characteristics parameters are built up. Finally, the dynamic influence of bearing misalignment on rotor system are divided into three kinds: additional rotor bending rigidity, additional bearing misalignment excitation force and additional imbalance. The equations suggest that additional imbalance excitation force activates the nonlinearity on rotor system and an additional 2x excitation force might appear.
文摘Sloshing has a widespread application in many industries including automotive, aerospace, ship building and motorcycle manufacturing. The goals of sloshing simulation is to first study the sloshing pattern and then improve the tank design to reduce noise levels, stresses on the structure and optimize the baffle arrangements. In this project simulation of the fluid in tank is studied and the design modification with baffle plate is considered to minimize the sloshing phenomena using Arbitrary Langrangian Eulerian (ALE) method. Also it is explained that there is need to analyze the sloshing phenomena in detail. Arbitrary Langrangian Eulerian finite element methods gain interest for the capability to control mesh geometry independently from material geometry, the ALE methods are used to create a new undistorted mesh for the fluid domain. In this paper we use the ALE technique to solve fuel slosh problem. Fuel slosh is an important design consideration not only for the fuel tank, but also for the structure supporting the fuel tank. Fuel slosh can be generated by many ways: abrupt changes in acceleration (braking), as well as abrupt changes in direction (highway exit-ramp). Repetitive motion can also be involved if a sloshing resonance is generated. These sloshing events can in turn affect the overall performance 0fthe parent structure. A finite element analysis method has been developed to analyze this complex event. A new ALE formulation for the fluid mesh can be used to keep the fluid mesh integrity during the motion of the tank. This paper explains the analysis capabilities on a technical level.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11102006)the FanZhou Foundation (Grant No. 20110502)
文摘An analytical method is proposed to find geometric structures of stable,unstable and center manifolds of the collinear Lagrange points.In a transformed space,where the linearized equations are in Jordan canonical form,these invariant manifolds can be approximated arbitrarily closely as Taylor series around Lagrange points.These invariant manifolds are represented by algebraic equations containing the state variables only without the help of time.Thus the so-called geometric structure of these invariant manifolds is obtained.The stable,unstable and center manifolds are tangent to the stable,unstable and center eigenspaces,respectively.As an example of applicability,the invariant manifolds of L 1 point of the Sun-Earth system are considered.The stable and unstable manifolds are symmetric about the line from the Sun to the Earth,and they both reach near the Earth,so that the low energy transfer trajectory can be found based on the stable and unstable manifolds.The periodic or quasi-periodic orbits,which are chosen as nominal arrival orbits,can be obtained based on the center manifold.