In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in...In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.展开更多
Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order...Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.展开更多
In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equa...In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.展开更多
文摘In this second paper of a series of papers, we explore the difference discrete versions for the Euler?Lagrange cohomology and apply them to the symplectic or multisymplectic geometry and their preserving properties in both the Lagrangian and Hamiltonian formalisms for discrete mechanics and field theory in the framework of multi-parameter differential approach. In terms of the difference discrete Euler?Lagrange cohomological concepts, we show that the symplectic or multisymplectic geometry and their difference discrete structure-preserving properties can always be established not only in the solution spaces of the discrete Euler?Lagrange or canonical equations derived by the difference discrete variational principle but also in the function space in each case if and only if the relevant closed Euler?Lagrange cohomological conditions are satisfied.
文摘Based on the three-order Lagrangian equation, pseudo-Hamilton actoon I^* is defined and the three-order Hamilton's principle and the conditions are obtained in the paper. Then, the Noether symmetry about three-order Lagrangian equations is deduced. Finally, an example is given to illustrate the application of the result.
基金the Natural Science Foundation of Jiangxi Provincethe Foundation of Education Department of Jiangxi Province under Grant No.[2007]136
文摘In this paper, based on the theorem of the high-order velocity energy, integration and variation principle, the high-order Hamilton's principle of general holonomic systems is given. Then, three-order Lagrangian equations and four-order Lagrangian equations are obtained from the high-order Hamilton's principle. Finally, the Hamilton's principle of high-order Lagrangian function is given.