A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to b...A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.展开更多
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous sim...The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.展开更多
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ...Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.展开更多
A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model ...A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.展开更多
In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe par...In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe partition function reduces to an expectation value of some inserted operators of a q-deformed Yang Mills theory living on a chain of P^1 's in the base p2 of X. At large N this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local p2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.展开更多
Numerical simulation of multiphase flows in processing equipment in industry with two-fluid models and Eulerian-Lagrangian approaches requires the constitutive equations describing the interactions between the dispers...Numerical simulation of multiphase flows in processing equipment in industry with two-fluid models and Eulerian-Lagrangian approaches requires the constitutive equations describing the interactions between the dispersed phase of high concentration and the continuous phase. The status of research on the forces on dispersed solid and fluid particles is reviewed in this article. As compared with the knowledge on drag of single solid particles study on panicle swarms and on other forces is not sufficient to meet the demand of reliable and efficient numerical simulation of multiphase flows. Thus, thorough study on the panicle swarms becomes the key to accurate multi-scale simulation of multiphase flows. Besides, the development of efficient algorithm dealing with the non-uniformity on both equipment and mesoscopic scales is recognized as an important issue to be resolved. The research topics in the near future are suggested.展开更多
The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM ap...The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.展开更多
In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory in...In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.展开更多
The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disint...The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.展开更多
A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physica...A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physical processes, and the studied periods are March (the dry season) and July (the wet season). The model performance has been first verified by sea-surface elevation and tidal current observations at several stations. Eight tracer experiments are designed and Lagrangian particle tracking is simulated to examine the impact of physical processes (tide, wind and river runoff) on the transport of passive tracer released within the surface layer. Numerical simulations and analysis indicate that: (1) wind does not change the tracer distribution after 30 days except for those released from the south area of the bay during the wet season; (2) the tide and the Qiantang River runoff are important for particle transport in the head area of the bay; (3) the Changjiang River runoff affects the tracer transport at the mouth of the bay, and its impact is smaller in the dry season than in the wet season.展开更多
The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of...The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of the four states, under Yang are the Major Yang and the Minor Yin, and under Yin are the Major Yin and the Minor Yang. The present study provides the proper positions of the four states in the ancient Tal-Chi diagram. The Fu Xi's Eight Trigrams Chart located along the ancient Tai-Chi diagram is also developed in the present study. The interface curve of Yin-Yang in the ancient Tai-Chi diagram has never been described mathematically. It can now be formulated by the equations describing the particle paths in the Lagrangian flow field.展开更多
Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The prese...Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51. The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concen- tric cylinders are ftrst specified. Then a linear velocity distribution of the fluid particles is used with different an- gle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.展开更多
It is common for an aircraft to encounter icing weather conditions, which would be dangerous to the flight. Thus, there is a need to study the detail of icing effect and the process of ice accretion on the aircraft. I...It is common for an aircraft to encounter icing weather conditions, which would be dangerous to the flight. Thus, there is a need to study the detail of icing effect and the process of ice accretion on the aircraft. In this paper, considering three different icing models according to weather conditions, i.e., sharp-angled ice, blunt-nosed ice and double horn ice, the Reynolds-averaged N-S equations and the S-A turbulence model are used to analyze the flow field for an iced wing/body configuration with a multi-block strategy and structured grid technique. The numerical result is compared with the experimental data. A flow solver is developed based on the Euler equations to investigate the ice accretion process. The droplets are tracked by using the Lagrangian method. In addition, a revised Messinger model is proposed to simulate the ice accretion. This numerical simulation is conducted for the ice accretion on an M6 wing and a wing/body/tail configuration. The presented results preliminarily show that the numerical methods are feasible and effective.展开更多
We show that isotropic Lagrangian submanifolds in a 6-dimensional strict nearly Kahler manifold are totally geodesic. Moreover, under some weaker conditions, a complete classification of the J-isotropic Lagrangian sub...We show that isotropic Lagrangian submanifolds in a 6-dimensional strict nearly Kahler manifold are totally geodesic. Moreover, under some weaker conditions, a complete classification of the J-isotropic Lagrangian submanifolds in the homogeneous nearly KahlerS3 × S3 is also obtained. Here, a Lagrangian submanifold is called J-isotropic, if there exists a function A, such that g((△↓h)(v, v, v), Jr) = λ holds for all unit tangent vector v.展开更多
This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of...This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.展开更多
A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using L...A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.展开更多
In this paper, we establish the first variational formula and its Euler-Lagrange equation for the total 2p-th mean curvature functional .M2p of a submanifold Mn in a general Riemannian manifold gn^n+m for p = 0, 1,.....In this paper, we establish the first variational formula and its Euler-Lagrange equation for the total 2p-th mean curvature functional .M2p of a submanifold Mn in a general Riemannian manifold gn^n+m for p = 0, 1,..., [n/2]. As an example, we prove that closed complex submanifolds in complex projective spaces are critical points of the functional M2p, called relatively 2p-minimal submanifolds, for all p. At last, we discuss the relations between relatively 2p-minimal submanifoIds and austere submanifolds in real space forms, as well as a special variational problem.展开更多
基金financially supported by the Singapore Economic Development Board(EDB)through the Minerals Metals and Materials Technology Centre(M3TC)Research Grant R-261-501-013-414
文摘A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.
基金the National Natural Science Foundation of China(Grant No.91434121)Ministry of Science and Technology of China(Grant No.2013BAC12B01)+1 种基金State Key Laboratory of Multiphase complex systems(Grant No.MPCS-2015-A-03)Chinese Academy of Sciences(Grant No.XDA07080301)
文摘The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.
基金Supported by the National Natural Science Foundation of China under Grant No. 10572041 and 50779008
文摘Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research.
基金This research was funded by the National Natural Science Foundation of China[grant number 41705119]a basic research project[grant number xxx0109-301].
文摘A Lagrangian advection scheme(LAS)for solving cloud drop diffusion growth was previously proposed(in 2020)and validated with simulations of cloud droplet spectra with a one-and-a-half dimensional(1.5D)cloud bin model for a deep convection case.The simulation results were improved with the new scheme over the original Eulerian scheme.In the present study,the authors simulated rain embryo formation with the LAS for a maritime shallow cumulus cloud case from the RICO(Rain in Cumulus over the Ocean)campaign.The model used to simulate the case was the same 1.5D cloud bin model coupled with the LAS.Comparing the model simulation results with aircraft observation data,the authors conclude that both the general microphysical properties and the detailed cloud droplet spectra are well captured.The LAS is robust and reliable for the simulation of rain embryo formation.
文摘In this note we make a test of the open topological string version of the OSV conjecture in the toric Calabi-Yau manifold X = O(-3) → P^2 with background D4-branes wrapped on Lagrangian submanifolds. The Dbrahe partition function reduces to an expectation value of some inserted operators of a q-deformed Yang Mills theory living on a chain of P^1 's in the base p2 of X. At large N this partition function can be written as a sum over squares of chiral blocks, which are related to the open topological string amplitudes in the local p2 geometry with branes at both the outer and inner edges of the toric diagram. This is in agreement with the conjecture.
基金Supported by the National Natural Science Foundation of China (20490206, 20676134), the National Basic Research Program of China (2009CB623406, 2004CB217604), the National Project of Scientific and Technical Supporting Program (2008BAF33B03) and the National High Technology Research and Development Program of China (2007AA060904)..
文摘Numerical simulation of multiphase flows in processing equipment in industry with two-fluid models and Eulerian-Lagrangian approaches requires the constitutive equations describing the interactions between the dispersed phase of high concentration and the continuous phase. The status of research on the forces on dispersed solid and fluid particles is reviewed in this article. As compared with the knowledge on drag of single solid particles study on panicle swarms and on other forces is not sufficient to meet the demand of reliable and efficient numerical simulation of multiphase flows. Thus, thorough study on the panicle swarms becomes the key to accurate multi-scale simulation of multiphase flows. Besides, the development of efficient algorithm dealing with the non-uniformity on both equipment and mesoscopic scales is recognized as an important issue to be resolved. The research topics in the near future are suggested.
文摘The Lagrangian DDM (discrete droplet model) is state-of-the-art for CFD (computational fluid dynamics) simulations of mixture formation and combustion in industrial engines. A commonly known drawback of the DDM approach is the attenuated validity in the dense spray, where the bulk liquid disintegrates into droplets. There the assumption of single droplets surrounded by a homogenous gas field is not reasonable. In this region, the Eulerian-Eulerian multi-phase approach performs better because instead of parcels the spray is represented by the volume fractions of one bulk liquid and several droplet size class phases. A further drawback of the DDM approach is that increasing the spatial resolution of the computational grid leads to a reduced statistical convergence, since the number of spray parcels per computational cell becomes smaller. It is desirable to combine the benefits of both spray approaches in coupled CFD simulations. Therefore, the dense spray region is simulated separately with the Eulerian spray approach on a highly resolved mesh covering only the region close to the nozzle orifice. The entire engine domain with combustion and emission models is simulated with the Eulerian-Lagrangian spray approach for the dilute spray region. The two simulations are coupled through exchange of boundary conditions and model source terms. An on-line coupling interface manages the data transfer between the two simulation clients, i.e., Eulerian spray and engine client. The aim of this work is to extend the coupled spray approach in terms of exchanging combustion related heat and species sources, and consequently creating the link between Eulerian spray and combustion models. The results show mixture formation and combustion in real-case engine simulations, and demonstrate the feasibility of spray model combination in engineering applications.
基金supported by the Special Fund for Strategic Pilot Technology,Chinese Academy of Sciences[grant number XDA05040300]
文摘In this study,the authors focus on the cut-off low pressure systems(COLs)lingering over East Asia in late spring and early summer and quantify the two-way stratosphere–troposphere exchange(STE)by 3D trajectory integrations,achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code(Version 3).By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes,it is found that stratosphere-to-troposphere transport(STT)fluxes exist in the center of COLs;and in the periphery of the COL center,troposphereto-stratosphere transport(TST)fluxes and STT fluxes are distributed alternately.Net transport fluxes in COLs are from stratosphere to troposphere,and the magnitude is about 10-4 kg m-2 s-1.The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs.By adopting appropriate residence time,the spurious transports are effectively excluded.Finally,the authors compare the results with previous studies,and find that the cross-tropopause fluxes(CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs.COLs play a significant role in local,rapid air mass exchanges,although they may only be responsible for a fraction of the total STE.
基金Project(2008AA11A116) supported by the National High Technology Research and Development Program of China
文摘The numerical model for predicting the flow and temperature fields of the melt in holding furnace with porous brick purging system were set up using Euler-Lagrange approach.In this model,bubbles coalescence and disintegration were ignored based on the dimensionless analysis,and the bubble size was assumed to be obedient to Rosin-Rammler distribution with a mean size of 0.6 mm.The results show that on reference operating condition,during the heating and agitation process,melt mixes well in the furnace,and the melt velocity increases with the increase of gas flux.Holding the melt for 30 min causes the max temperature in the bulk melt to increase to 60 K.After holding the heat,the agitation processing restarts,and it takes 10 min for the stratified melt to retrieve the homogeneous temperature field when the gas flux is 10 L/min,which shows deficient alloying and degassing in the melt.With the increase of gas flux from 10 to 20,30 and 40 L/min,the necessary recovery time decreases from 10 to 6,5 and 4 min gradually,which shows the improvement of the stirring efficiency.Depending on the processing purposes,for both good degassing performance and gas saving,proper operating strategy and parameters (gas flux,primarily) could be adjusted.
基金Supported by the Natural Science Foundation of China (No.40576080)National High Technology Research and Development Program of China (863 Program, No. 2007AA12Z182)
文摘A Lagrangian tracer model is set up for Hangzhou Bay based on Coupled Hydrodynamical Ecological model for Regional Shelf Sea (COHERENS). The study area is divided into eight subdomains to identify the dominant physical processes, and the studied periods are March (the dry season) and July (the wet season). The model performance has been first verified by sea-surface elevation and tidal current observations at several stations. Eight tracer experiments are designed and Lagrangian particle tracking is simulated to examine the impact of physical processes (tide, wind and river runoff) on the transport of passive tracer released within the surface layer. Numerical simulations and analysis indicate that: (1) wind does not change the tracer distribution after 30 days except for those released from the south area of the bay during the wet season; (2) the tide and the Qiantang River runoff are important for particle transport in the head area of the bay; (3) the Changjiang River runoff affects the tracer transport at the mouth of the bay, and its impact is smaller in the dry season than in the wet season.
文摘The particle paths of the Lagrangian flow field simulate very well the interface curve of the Yin-Yang balance in the ancient Tal-Chi diagram. There are four forms called the "four states" in the Tai-Chi diagram. Of the four states, under Yang are the Major Yang and the Minor Yin, and under Yin are the Major Yin and the Minor Yang. The present study provides the proper positions of the four states in the ancient Tal-Chi diagram. The Fu Xi's Eight Trigrams Chart located along the ancient Tai-Chi diagram is also developed in the present study. The interface curve of Yin-Yang in the ancient Tai-Chi diagram has never been described mathematically. It can now be formulated by the equations describing the particle paths in the Lagrangian flow field.
基金the Natural Sciences and Engineering Research Council of Canada
文摘Galaxies are huge families of stars held together by their own gravities. The system M51 is a spiral galaxy. It possesses billions of stars. The range of the spiral arms extends hundred thousand light years. The present study is in an attempt in using the particle paths of the Lagrangian flow field to simulate the spiral arms of Galaxy M51. The Lagrangian flow field is introduced. The initial locations of fluid particles in the space between two concen- tric cylinders are ftrst specified. Then a linear velocity distribution of the fluid particles is used with different an- gle rotations of the particles to obtain the particle paths in the Lagrangian diagram. For simulating the spiral arms of Galaxy M51, the Lagrangian M51 diagram is developed. The particle paths of the Lagrangian M51 diagram agree quite well with the spiral arms of Galaxy M51.
基金supported by the National Natural Science Foundation of China (Grant No. 11072201)the Aeronautic Science Foundation of China (Grant No. 2011ZA53006)
文摘It is common for an aircraft to encounter icing weather conditions, which would be dangerous to the flight. Thus, there is a need to study the detail of icing effect and the process of ice accretion on the aircraft. In this paper, considering three different icing models according to weather conditions, i.e., sharp-angled ice, blunt-nosed ice and double horn ice, the Reynolds-averaged N-S equations and the S-A turbulence model are used to analyze the flow field for an iced wing/body configuration with a multi-block strategy and structured grid technique. The numerical result is compared with the experimental data. A flow solver is developed based on the Euler equations to investigate the ice accretion process. The droplets are tracked by using the Lagrangian method. In addition, a revised Messinger model is proposed to simulate the ice accretion. This numerical simulation is conducted for the ice accretion on an M6 wing and a wing/body/tail configuration. The presented results preliminarily show that the numerical methods are feasible and effective.
基金supported by National Natural Science Foundation of China (Grant No. 11371330)
文摘We show that isotropic Lagrangian submanifolds in a 6-dimensional strict nearly Kahler manifold are totally geodesic. Moreover, under some weaker conditions, a complete classification of the J-isotropic Lagrangian submanifolds in the homogeneous nearly KahlerS3 × S3 is also obtained. Here, a Lagrangian submanifold is called J-isotropic, if there exists a function A, such that g((△↓h)(v, v, v), Jr) = λ holds for all unit tangent vector v.
基金Project supported by the National Natural Science Foundation of China (Nos. 10901088, 11001268)
文摘This paper mainly deals with the type II singularities of the mean curvature flow from a symplectic surface or from an almost calibrated Lagrangian surface in a K¨ahler surface.The relation between the maximum of the Kahler angle and the maximum of |H|2 on the limit flow is studied.The authors also show the nonexistence of type II blow-up flow of a symplectic mean curvature flow which is normal flat or of an almost calibrated Lagrangian mean curvature flow which is flat.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.11132005)the National Natural Science Foundation of China(Grant No.50876053)Opening Fund of State of Key Laboratory of Nonlinear Mechanics
文摘A particle-laden turbulent channel flow is investigated to study particle clusters in large-scale turbulent coherent structures. The fluid phase is calculated by large eddy simulation and particles are tracked using Lagrangian trajectory method. The flow Reynolds number is 180 based on the friction velocity and half-width of the channel. The particle is lycopodium with St=0.93 which may well follow the fluid phase. The mean and fluctuating velocities of both two phases are obtained, which are in good agreement with previous data. The strongest accumulations of particles in low-speed streak structures are observed at y~=l 1.3. Moreover, once particles are captured in low-speed streaks, most of them will reside there for a long period. Particles clustered in low-speed streaks obtain smaller instantaneous wall-normal and spanwise velocities than those out of there, which induce a larger particle flux into low-speed streaks than that out of there. The study is important for understanding particle dispersion mechanisms in gas-particle turbulent channel flows.
基金supported by National Natural Science Foundation of China(Grant No.11001016)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No. 20100003120003)the Program for Changjiang Scholars and Innovative Research Team in University
文摘In this paper, we establish the first variational formula and its Euler-Lagrange equation for the total 2p-th mean curvature functional .M2p of a submanifold Mn in a general Riemannian manifold gn^n+m for p = 0, 1,..., [n/2]. As an example, we prove that closed complex submanifolds in complex projective spaces are critical points of the functional M2p, called relatively 2p-minimal submanifolds, for all p. At last, we discuss the relations between relatively 2p-minimal submanifoIds and austere submanifolds in real space forms, as well as a special variational problem.