期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cascade插值方法在GRAPES模式中的应用 被引量:6
1
作者 陈峰峰 王光辉 +2 位作者 沈学顺 陈德辉 胡江林 《应用气象学报》 CSCD 北大核心 2009年第2期164-170,共7页
基于半拉格朗日(semi-Lagrangian)方案的数值天气预报模式,求解半拉格朗日轨迹上游点变量,通常采用传统直线逐点拉格朗日多项式插值,由已知模式格点(欧拉网格点)的数值插值获得。对于三维空间上游点的插值,N阶精度需要O(N3)运算量。N增... 基于半拉格朗日(semi-Lagrangian)方案的数值天气预报模式,求解半拉格朗日轨迹上游点变量,通常采用传统直线逐点拉格朗日多项式插值,由已知模式格点(欧拉网格点)的数值插值获得。对于三维空间上游点的插值,N阶精度需要O(N3)运算量。N增大,运算量将大幅增加,特别耗费计算机机时,而采用Cascade插值法(降阶插值法)则只需要O(N)运算量。它的显著特点是:用曲线代替直线,通过一系列中间过渡网格点,在曲线上用一维拉格朗日插值,使得相邻拉格朗日格点或中间过渡点的插值不再是孤立的,而且可以重复使用某些中间结果,达到减少运算量的目的。将这种方法合理应用于GRAPES模式,并根据模式的特点,对Cascade插值过程中独立变量的距离分段计算,从而有利于实现并行计算。计算结果表明Cascade插值法与传统直线逐点插值法相比,计算效率平均提高约30%,同时不降低精度。 展开更多
关键词 欧拉网格 拉格朗日网格点 Cascade插值方法 GRAPES模式
下载PDF
Two-dimensional numerical manifold method with multilayer covers 被引量:6
2
作者 LIU ZhiJun ZHENG Hong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第4期515-530,共16页
In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In ... In order to reach the best numerical properties with the numerical manifold method(NMM),uniform finite element meshes are always favorite while constructing mathematical covers,where all the elements are congruent.In the presence of steep gradients or strong singularities,in principle,the locally-defined special functions can be added into the NMM space by means of the partition of unity,but they are not available to those complex problems with heterogeneity or nonlinearity,necessitating local refinement on uniform meshes.This is believed to be one of the most important open issues in NMM.In this study multilayer covers are proposed to solve this issue.In addition to the first layer cover which is the global cover and covers the whole problem domain,the second and higher layer covers with smaller elements,called local covers,are used to cover those local regions with steep gradients or strong singularities.The global cover and the local covers have their own partition of unity,and they all participate in the approximation to the solution.Being advantageous over the existing procedures,the proposed approach is easy to deal with any arbitrary-layer hanging nodes with no need to construct super-elements with variable number of edge nodes or introduce the Lagrange multipliers to enforce the continuity between small and big elements.With no limitation to cover layers,meanwhile,the creation of an even error distribution over the whole problem domain is significantly facilitated.Some typical examples with steep gradients or strong singularities are analyzed to demonstrate the capacity of the proposed approach. 展开更多
关键词 numerical manifold method finite element method COVERS hanging nodes structured local refinement short cracks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部