An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on M...An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.展开更多
The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simu...The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.展开更多
Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great conc...Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.展开更多
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous sim...The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.展开更多
基金Project(50505027) supported by the National Natural Science Foundation of ChinaProject(20070248056) supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘An Arbitrary Lagrangian-Eulerian(ALE) method was employed to simulate the sheet metal extrusion process,aiming at avoiding mesh distortion and improving the computational accuracy.The method was implemented based on MSC/MARC by using a fractional step method,i.e.a Lagrangian step followed by an Euler step.The Lagrangian step was a pure updated Lagrangian calculation and the Euler step was performed using mesh smoothing and remapping scheme.Due to the extreme distortion of deformation domain,it was almost impossible to complete the whole simulation with only one mesh topology.Therefore,global remeshing combined with the ALE method was used in the simulation work.Based on the numerical model of the process,some deformation features of the sheet metal extrusion process,such as distribution of localized equivalent plastic strain,and shrinkage cavity,were revealed.Furthermore,the differences between conventional extrusion and sheet metal extrusion process were also analyzed.
文摘The gas-droplet two-phase reacting flow in a model combustor with the V-gutter flame holder is studied by an Eulerian-Lagrangian large-eddy simulation (LES) approach. The k-equation subgrid-scale model is used to simulate the subgrid eddy viscosity, and the eddy-break-up (EBU) combustion subgrid-scale model is used to determine the chemical reaction rate. A two-step turbulent combustion subgrid-scale model is employed for calculating carbon monoxide CO concentration, and the NO subgrid-scale pollutant formation model for the evaluation of the rate of NO formation. The heat flux model is applied to the prediction of radiant heat transfer. The gas phase is solved with the SIMPLE algorithm and a hybrid scheme in the staggered grid system. The liquid phase equations are solved in a Lagrangian frame in reference of the particle-source-in-cell (PSIC) algorithm. From simulation results, the exchange of mass, moment and energy between gas and particle fields for the reacting flow in the afterburner with a V-gutter flame holder can be obtained. By the comparison of experimental and simulation results, profile temperature and pollutant of the outlet are quite in agreement with experimental data. Results show that the LES approach for predicting the two-phase instantaneous reacting flow and pollutant emissions in the afterburner is feasible.
基金Supported by EPSRC/FSC (EP/I502033/1) and Leverhulme Trust (ECF/40348), UK
文摘Two floating structures in close proximity are very commonly seen in offshore engineering. They are often subjected to steep waves and, therefore, the transient effects on their hydrodynamic features are of great concem. This paper uses the quasi arbitrary Lagrangian Eulerian finite element method (QALE-FEM), based on the fully nonlinear potential theory (FNPT), to numerically investigate the interaction between two 3-D floating structures, which undergo motions with 6 degrees of freedom (DOFs), and are subjected to waves with different incident angles. The transient behaviours of floating structures, the effect of the accompanied structures, and the nonlinearity on the motion of and the wave loads on the structures are the main focuses of the study. The investigation reveals an important transient effects causing considerably larger structure motion than that in steady state. The results also indicate that the accompanied structure in close proximity enhances the interaction between different motion modes and results in stronger nonlinearity causing 2hal-order component to be of similar significance to the fundamental one.
基金the National Natural Science Foundation of China(Grant No.91434121)Ministry of Science and Technology of China(Grant No.2013BAC12B01)+1 种基金State Key Laboratory of Multiphase complex systems(Grant No.MPCS-2015-A-03)Chinese Academy of Sciences(Grant No.XDA07080301)
文摘The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.