为增强拉索攀爬机器人在不同风载环境下的适应能力,提出了一种机器人-拉索-风耦合系统的动力学建模与分析方法.首先,利用磁流变液体的固液转换特性,设计了具有输出力连续可调功能的阻尼器,并将其应用于拉索攀爬机器人.其次,分析拉索载荷...为增强拉索攀爬机器人在不同风载环境下的适应能力,提出了一种机器人-拉索-风耦合系统的动力学建模与分析方法.首先,利用磁流变液体的固液转换特性,设计了具有输出力连续可调功能的阻尼器,并将其应用于拉索攀爬机器人.其次,分析拉索载荷,建立了机器人-拉索-风耦合动力学模型.然后,通过有限元分析,获得阻尼器中磁流变液产生的阻尼力变化范围为0~153.45 N,与理论模型一致.同时,利用动力学模型的数值仿真得到了阻尼器的建议工作电流分别为0.1 A (3级风)和0.3 A (6级风).最后,为了验证以上理论,分别对阻尼器和拉索攀爬机器人进行了性能测试实验.结果表明,与理论值相比,该阻尼器实际输出力的平均相对误差不超过3.22%.将其安装到机器人上,可将速度波动范围降低83.7%,能显著提高机器人的爬升稳定性.展开更多
文摘为增强拉索攀爬机器人在不同风载环境下的适应能力,提出了一种机器人-拉索-风耦合系统的动力学建模与分析方法.首先,利用磁流变液体的固液转换特性,设计了具有输出力连续可调功能的阻尼器,并将其应用于拉索攀爬机器人.其次,分析拉索载荷,建立了机器人-拉索-风耦合动力学模型.然后,通过有限元分析,获得阻尼器中磁流变液产生的阻尼力变化范围为0~153.45 N,与理论模型一致.同时,利用动力学模型的数值仿真得到了阻尼器的建议工作电流分别为0.1 A (3级风)和0.3 A (6级风).最后,为了验证以上理论,分别对阻尼器和拉索攀爬机器人进行了性能测试实验.结果表明,与理论值相比,该阻尼器实际输出力的平均相对误差不超过3.22%.将其安装到机器人上,可将速度波动范围降低83.7%,能显著提高机器人的爬升稳定性.