The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental ...The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.展开更多
Bats,probably the most abundant,diverse and geographically dispersed vertebrates on earth,have recently been shown to be the reservoir hosts of a number of emerging viruses responsible for severe human and livestock d...Bats,probably the most abundant,diverse and geographically dispersed vertebrates on earth,have recently been shown to be the reservoir hosts of a number of emerging viruses responsible for severe human and livestock disease outbreaks. Flying foxes have been demonstrated to be the natural reservoir for Hendra and Nipah viruses. Evidence supporting the possibility of bats as potential reservoirs for SARS coronavirus(SARS-CoV) and Ebola virus has also been reported. The recent discovery of these viruses and other viruses occurring naturally in the bat population provides a unique insight into a diverse pool of potentially emergent and pathogenic viruses. The factors which influence the ability of zoonotic viruses to effectively cross the species barrier from bats to other animal populations are poorly understood. A brief review is provided here on the recently emerged bat viruses and on current and future strategies for research in this area.展开更多
Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms ...Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.展开更多
Primary or parental magmas act as probes to infer eruption and source temperatures for both mid-ocean ridge (MOR) and‘hot-spot' magmas (tholeiitic picrites). The experimental petrogenetic constraints ('inverse...Primary or parental magmas act as probes to infer eruption and source temperatures for both mid-ocean ridge (MOR) and‘hot-spot' magmas (tholeiitic picrites). The experimental petrogenetic constraints ('inverse' experiments) argue for no significant temperature differences between them. However, there are differences in major, minor and trace elements which characterise geochemical, not thermal, anomalies beneath ‘hot-spots'. We suggest that diapiric upwelling from interfaces (redox contrasts) between old subducted slab and normal MOR basalt source mantle is the major reason for the observed characteristics of island chain or ‘hot-spot' volcanism. Intraplate basalts also include widely distributed volcanic centres containing lherzolite xenoliths, i.e. mantle-derived magmas. Inverse experiments on olivine basalt, alkali oli- vine basalt, olivine basanite, olivine nephelinite, olivine melilitite and olivine leucitite (lamproite) determined liquidus phases as a function of pressure, initially under anhydrous and CO2-absent conditions. Under C- and H-absent conditions, only tholeiites to alkali olivine basalts had O1 + Opx 4-Cpx as high-pressure liquidus phases. Addition of H20 accessed olivine basanites at 2.5-3 GPa, ,- 1,200 ℃, but both CO2 and H20 were necessary to obtain saturation with O1, Opx, Cpx and Ga at 2.5-3.5 GPa for olivine nephelinite and olivine melilitite. The forward and inverse experimental studies are combined to formulate a petrogenetic grid for intraplate, ‘hot-spot' and MOR magmatism within the plate tectonics paradigm. The asthenosphere is geochemically zoned by slow upward migration of incipient melt. The solidus and phasestabilities of lherzolite with very small water contents (〈3,000 ppm) determine the thin plate behaviour of the oceanic lithosphere and thus the Earth's convection in the form of plate tectonics. There is no evidence from the parental magmas of MOR and ‘hot-spots' to support the 'deep mantle thermal plume' hypothesis. The preferred alternative is the presence of old subducted slabs, relatively buoyant and oxidised with respect to MORB source mantle and suspended or upwelling in or below the lower asthenosphere (and thus detached from overlying plate movement).展开更多
文摘The fabrication of Bragg gratings on silicon-on-insulator (SOI) rib waveguides using electron-beam lithography is presented. The grating waveguide is optimally designed for actual photonic integration. Experimental and theoretical evaluations of the Bragg grating are demonstrated. By thinning the SOl device layer and deeply etching the Bragg grating, a large grating coupling coefficient of 30cm^-1 is obtained.
文摘Bats,probably the most abundant,diverse and geographically dispersed vertebrates on earth,have recently been shown to be the reservoir hosts of a number of emerging viruses responsible for severe human and livestock disease outbreaks. Flying foxes have been demonstrated to be the natural reservoir for Hendra and Nipah viruses. Evidence supporting the possibility of bats as potential reservoirs for SARS coronavirus(SARS-CoV) and Ebola virus has also been reported. The recent discovery of these viruses and other viruses occurring naturally in the bat population provides a unique insight into a diverse pool of potentially emergent and pathogenic viruses. The factors which influence the ability of zoonotic viruses to effectively cross the species barrier from bats to other animal populations are poorly understood. A brief review is provided here on the recently emerged bat viruses and on current and future strategies for research in this area.
基金funded by a National Key Research and De-velopment Program Project[grant number 2018YFC1505601]National Natural Science Foundation of China[grant number 41975072]。
文摘Two successive severe cold waves invaded eastern China from the end of 2020 to early 2021,leading to an extensive,severe,and persistent drop in temperature.The paper investigates the features and formation mechanisms of the two cold waves.The main results are as follows:(1)An anticlockwise turning of the transverse trough was observed in both cold waves.However,a broad ridge was maintained over the Ural area from mid-December 2020 till mid-January 2021.No breakdown or discontinuous westward shift of the blocking high was observed,which is different from typical cold waves in eastern Asia.(2)The maintenance and strengthening of northerly winds in front of the Ural high led to an increase in baroclinicity in-situ.In the downstream region,the gradient of the geopotential height contour in the south of the transverse trough rapidly increased and the advection of cold temperature consistently enhanced and advanced southwards.This in turn caused the intensification and southward expansion of the Siberian high.(3)Energy propagation of the quasi-stationary wave was a reason for the development and persistence of the Ural blocking.Prior to the occurrence of the two cold waves,the energy of the low-frequency stationary wave originating from near 0°E(or even to the west)propagated eastwards,which helped the Ural ridge intensify and maintain.Meanwhile,it also contributed to the development of the trough downstream of the ridge and resulted in the anticlockwise turning of the transverse trough,providing a favorable condition for the southward outbreak of cold air.
基金the support of the Department of Geology/School of Earth Sciences at University of Tasmaniathe Research School of Earth Sciences, Australian National UniversityAt University of Tasmania, ‘Earth Sciences’ and ‘Centre for Ore Deposits and Exploration Studies (CODES)’
文摘Primary or parental magmas act as probes to infer eruption and source temperatures for both mid-ocean ridge (MOR) and‘hot-spot' magmas (tholeiitic picrites). The experimental petrogenetic constraints ('inverse' experiments) argue for no significant temperature differences between them. However, there are differences in major, minor and trace elements which characterise geochemical, not thermal, anomalies beneath ‘hot-spots'. We suggest that diapiric upwelling from interfaces (redox contrasts) between old subducted slab and normal MOR basalt source mantle is the major reason for the observed characteristics of island chain or ‘hot-spot' volcanism. Intraplate basalts also include widely distributed volcanic centres containing lherzolite xenoliths, i.e. mantle-derived magmas. Inverse experiments on olivine basalt, alkali oli- vine basalt, olivine basanite, olivine nephelinite, olivine melilitite and olivine leucitite (lamproite) determined liquidus phases as a function of pressure, initially under anhydrous and CO2-absent conditions. Under C- and H-absent conditions, only tholeiites to alkali olivine basalts had O1 + Opx 4-Cpx as high-pressure liquidus phases. Addition of H20 accessed olivine basanites at 2.5-3 GPa, ,- 1,200 ℃, but both CO2 and H20 were necessary to obtain saturation with O1, Opx, Cpx and Ga at 2.5-3.5 GPa for olivine nephelinite and olivine melilitite. The forward and inverse experimental studies are combined to formulate a petrogenetic grid for intraplate, ‘hot-spot' and MOR magmatism within the plate tectonics paradigm. The asthenosphere is geochemically zoned by slow upward migration of incipient melt. The solidus and phasestabilities of lherzolite with very small water contents (〈3,000 ppm) determine the thin plate behaviour of the oceanic lithosphere and thus the Earth's convection in the form of plate tectonics. There is no evidence from the parental magmas of MOR and ‘hot-spots' to support the 'deep mantle thermal plume' hypothesis. The preferred alternative is the presence of old subducted slabs, relatively buoyant and oxidised with respect to MORB source mantle and suspended or upwelling in or below the lower asthenosphere (and thus detached from overlying plate movement).