The pultrusion of the polybenzoxazine resin matrix Z-pin is studied, because the Z-pin technology is an efficient reinforcement method for composites. Based on the curing characteristics acquired by differential scann...The pultrusion of the polybenzoxazine resin matrix Z-pin is studied, because the Z-pin technology is an efficient reinforcement method for composites. Based on the curing characteristics acquired by differential scanning calorimeter(DSC) analysis, the suitable mould temperature for pultrusion is researched with the visual inspection and the Z-pin short beam shear test. The pull-out test is designed to evaluate the post oven temperature that can affect the combination between Z-pins and laminates. And then, the appropriate temperature for the post oven is obtained. Finally, micro photos are used to inspect the defects in Z-pins. The results show that when the resin is heated to 70°C, Z-pin pultrusion demands for viscosity are satisfied, and the shelf-life is about 4 h. With the mould temperature increasing to 140°C, the Z-pin short beam shear strength rises correspondingly and the cross section profile is the best. When the post oven temperature declines, the combination between Z-pins and laminates becomes stronger. However, pores appear in Z-pins unless the oven temperature increases to 200°C. Therefore, the optimum post oven temperature should be set at 200°C.展开更多
The qualitative relationship between hydrogen concentration and notch tensile strength has been investigated for 5Ni-16Cr-Mo steel with different strength.The notch tensile strength was determined by means of slow str...The qualitative relationship between hydrogen concentration and notch tensile strength has been investigated for 5Ni-16Cr-Mo steel with different strength.The notch tensile strength was determined by means of slow strain rate test(SSRT)on circumferentially notched round bar specimens with the notch root radius of 0.15 mm after hydrogen charging.Meanwhile,the hydrogen diffusion behaviors of various strength steel were studied by thermal desorption spectroscopy(TDS)analysis.The SSRT results show that the T460 steel has higher susceptibility of hydrogen embrittlement in contrast with T520 steel.The activation energies and microstructure indicate that the dislocations and interfaces of martensitic laths are hydrogen traps in 5Ni-16Cr-Mo steel.By SSRT,the elastic limit of charged specimen loaded in air is higher than the flow stress without hydrogen charging before unloading,while the difference is defined as hydrogen-induced stress.The value of hydrogen-induced stress σ*increases linearly with hydrogen concentration:σ*=−0.622+2.015C0.The finite element analysis results of stress distributions near the notch tip have shown that the maximum principal stress increases with the notch root radius decreasing.展开更多
基金Supported by the Military Product Itemthe Research Funding of Nanjing University of Aeronautics and Astronautics(NS2010162)~~
文摘The pultrusion of the polybenzoxazine resin matrix Z-pin is studied, because the Z-pin technology is an efficient reinforcement method for composites. Based on the curing characteristics acquired by differential scanning calorimeter(DSC) analysis, the suitable mould temperature for pultrusion is researched with the visual inspection and the Z-pin short beam shear test. The pull-out test is designed to evaluate the post oven temperature that can affect the combination between Z-pins and laminates. And then, the appropriate temperature for the post oven is obtained. Finally, micro photos are used to inspect the defects in Z-pins. The results show that when the resin is heated to 70°C, Z-pin pultrusion demands for viscosity are satisfied, and the shelf-life is about 4 h. With the mould temperature increasing to 140°C, the Z-pin short beam shear strength rises correspondingly and the cross section profile is the best. When the post oven temperature declines, the combination between Z-pins and laminates becomes stronger. However, pores appear in Z-pins unless the oven temperature increases to 200°C. Therefore, the optimum post oven temperature should be set at 200°C.
基金Project(3220024018)supported by the Fundamental Research Funds for the Luoyang Sunrui Special Equipment Co.,Ltd.,China。
文摘The qualitative relationship between hydrogen concentration and notch tensile strength has been investigated for 5Ni-16Cr-Mo steel with different strength.The notch tensile strength was determined by means of slow strain rate test(SSRT)on circumferentially notched round bar specimens with the notch root radius of 0.15 mm after hydrogen charging.Meanwhile,the hydrogen diffusion behaviors of various strength steel were studied by thermal desorption spectroscopy(TDS)analysis.The SSRT results show that the T460 steel has higher susceptibility of hydrogen embrittlement in contrast with T520 steel.The activation energies and microstructure indicate that the dislocations and interfaces of martensitic laths are hydrogen traps in 5Ni-16Cr-Mo steel.By SSRT,the elastic limit of charged specimen loaded in air is higher than the flow stress without hydrogen charging before unloading,while the difference is defined as hydrogen-induced stress.The value of hydrogen-induced stress σ*increases linearly with hydrogen concentration:σ*=−0.622+2.015C0.The finite element analysis results of stress distributions near the notch tip have shown that the maximum principal stress increases with the notch root radius decreasing.