低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典波达方向(direction of arrival,DoA)估计算法存在估计误差较大的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,给出一种适用于低SNR和小接收快拍数据环境...低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典波达方向(direction of arrival,DoA)估计算法存在估计误差较大的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,给出一种适用于低SNR和小接收快拍数据环境的信源个数及DoA估计算法。该算法首先利用接收数据互协方差矩阵所得自相关矩阵的特征值,给出了一种信源个数估计方法;进而提出了一种新的二维DoA估计方法。计算机仿真验证了该算法在低SNR及小接收快拍数情况下的有效性。展开更多
为了解决移动通信环境中,在低信噪比、少快拍数情况下信号波达方向(Direction of Arrival,DOA)估计性能差问题,提出一种联合范数去噪与Toeplitz矩阵重构的DOA估计算法.首先根据阵列协方差矩阵的Hermitian特性,利用协方差矩阵范数估计其...为了解决移动通信环境中,在低信噪比、少快拍数情况下信号波达方向(Direction of Arrival,DOA)估计性能差问题,提出一种联合范数去噪与Toeplitz矩阵重构的DOA估计算法.首先根据阵列协方差矩阵的Hermitian特性,利用协方差矩阵范数估计其最大特征值,进而估计噪声功率,然后对阵列协方差矩阵主对角元素进行去噪,再对去噪后的协方差矩阵重排.仿真结果表明:可以有效提高子空间类算法在低信噪比、少快拍数条件下的性能.展开更多
文摘低信噪比(signal-to-noise ratio,SNR)或小接收快拍数条件下,经典波达方向(direction of arrival,DoA)估计算法存在估计误差较大的缺点。针对该问题,充分利用L型阵列接收数据的自、互相关信息,给出一种适用于低SNR和小接收快拍数据环境的信源个数及DoA估计算法。该算法首先利用接收数据互协方差矩阵所得自相关矩阵的特征值,给出了一种信源个数估计方法;进而提出了一种新的二维DoA估计方法。计算机仿真验证了该算法在低SNR及小接收快拍数情况下的有效性。
文摘为了解决移动通信环境中,在低信噪比、少快拍数情况下信号波达方向(Direction of Arrival,DOA)估计性能差问题,提出一种联合范数去噪与Toeplitz矩阵重构的DOA估计算法.首先根据阵列协方差矩阵的Hermitian特性,利用协方差矩阵范数估计其最大特征值,进而估计噪声功率,然后对阵列协方差矩阵主对角元素进行去噪,再对去噪后的协方差矩阵重排.仿真结果表明:可以有效提高子空间类算法在低信噪比、少快拍数条件下的性能.