In this paper, a new type of conserved quantity directly deduced from the Mei symmetry for relativistic variable mass system in phase space is studied. The definition and the criterion of the Mei symmetry for the syst...In this paper, a new type of conserved quantity directly deduced from the Mei symmetry for relativistic variable mass system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The conditions for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.展开更多
Taking advantage of result in [1], this paper studied generalized quasi variational inequalities on paracompact sets, unified and extended corresponding results in [4-6].
In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence t...In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].展开更多
文摘In this paper, a new type of conserved quantity directly deduced from the Mei symmetry for relativistic variable mass system in phase space is studied. The definition and the criterion of the Mei symmetry for the system are given. The conditions for existence and the form of the new conserved quantity are obtained. Finally, an example is given to illustrate the application of the results.
文摘Taking advantage of result in [1], this paper studied generalized quasi variational inequalities on paracompact sets, unified and extended corresponding results in [4-6].
文摘In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].