Topological phases in non-Hermitian systems have become fascinating subjects recently.In this paper,we attempt to classify topological phases in 1D interacting non-Hermitian systems.We begin with the non-Hermitian gen...Topological phases in non-Hermitian systems have become fascinating subjects recently.In this paper,we attempt to classify topological phases in 1D interacting non-Hermitian systems.We begin with the non-Hermitian generalization of the Su-Schrieffer-Heeger(SSH)model and discuss its many-body topological Berry phase,which is well defined for all interacting quasi-Hermitian systems(non-Hermitian systems that have real energy spectrum).We then demonstrate that the classification of topological phases for quasi-Hermitian systems is exactly the same as their Hermitian counterparts.Finally,we construct the fixed point partition function for generic 1D interacting non-Hermitian local systems and find that the fixed point partition function still has a one-to-one correspondence to their Hermitian counterparts.Thus,we conclude that the classification of topological phases for generic 1D interacting non-Hermitian systems is still exactly the same as Hermitian systems.展开更多
基金supported by the National Key Research and Development Program of China (2016YFA0300300)the National Natural Science Foundation of China (NSFC+4 种基金11861161001)NSFC/RGC Joint Research Scheme (N-CUHK427/18)the Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS20190902092905285)Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100Center for Computational Science and Engineering of Southern University of Science and Technology。
文摘Topological phases in non-Hermitian systems have become fascinating subjects recently.In this paper,we attempt to classify topological phases in 1D interacting non-Hermitian systems.We begin with the non-Hermitian generalization of the Su-Schrieffer-Heeger(SSH)model and discuss its many-body topological Berry phase,which is well defined for all interacting quasi-Hermitian systems(non-Hermitian systems that have real energy spectrum).We then demonstrate that the classification of topological phases for quasi-Hermitian systems is exactly the same as their Hermitian counterparts.Finally,we construct the fixed point partition function for generic 1D interacting non-Hermitian local systems and find that the fixed point partition function still has a one-to-one correspondence to their Hermitian counterparts.Thus,we conclude that the classification of topological phases for generic 1D interacting non-Hermitian systems is still exactly the same as Hermitian systems.