A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an u...A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.展开更多
In this paper, we show that a delayed discrete Hopfield neural network of two nonidentical neurons with no self-connections can demonstrate chaotic behavior in a region away from the origin. To this end, we first tran...In this paper, we show that a delayed discrete Hopfield neural network of two nonidentical neurons with no self-connections can demonstrate chaotic behavior in a region away from the origin. To this end, we first transform the model, by a novel way, into an equivalent system which enjoys some nice properties. Then, we identify a chaotic invariant set for this system and show that the system within this set is topologically conjugate to the full shift map on two symbols. This confirms chaos in the sense of Devaney. Our main result is complementary to the results in Kaslik and Balint (2008) and Huang and Zou (2005), where it was shown that chaos may occur in neighborhoods of the origin for the same system. We also present some numeric simulations to demonstrate our theoretical results.展开更多
A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincar′e map, power spectrum, Kaplan–Yorke dimension, Lyapunov expo...A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincar′e map, power spectrum, Kaplan–Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key.展开更多
基金supported by National Natural Science Foundation of China (Grant No.11071084)Natural Science Foundation of Guangdong Province (Grant No. 10451063101006332)
文摘A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.
基金National Natural Science Foundation of China (Grant Nos. 11071263 and 11201504)the Natural Sciences and Engineering Research Council of Canada (Grant No. 227048-2010)
文摘In this paper, we show that a delayed discrete Hopfield neural network of two nonidentical neurons with no self-connections can demonstrate chaotic behavior in a region away from the origin. To this end, we first transform the model, by a novel way, into an equivalent system which enjoys some nice properties. Then, we identify a chaotic invariant set for this system and show that the system within this set is topologically conjugate to the full shift map on two symbols. This confirms chaos in the sense of Devaney. Our main result is complementary to the results in Kaslik and Balint (2008) and Huang and Zou (2005), where it was shown that chaos may occur in neighborhoods of the origin for the same system. We also present some numeric simulations to demonstrate our theoretical results.
基金Supported by Hunan Provincial Natural Science Foundation of China under Grant No.2016JJ4036University Natural Science Foundation of Jiangsu Province under Grant No.14KJB120007the National Natural Science Foundation of China under Grant Nos.11504176and 11602084
文摘A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincar′e map, power spectrum, Kaplan–Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key.