In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the ...In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the T O space X being Hausdorff. The class of separated frames includes that of strong Hausdorff frames and that of S frames. We shall show that the class of separated frames is a class closed under the formation of coproducts and subspaces, and the space Fil( L ) is Hausdorff for any separated frame L . Therefore there is a contravariant adjunction between the category TOP 2 of Hausdorff topological spaces and the category FRAM 2 of separated frames.展开更多
文摘In this paper we shall offer a separation axiom for frames inspired by the Hausdorff separation axiom for topological spaces. We call it separated condition. This is a condition on topology OX equivalent to the T O space X being Hausdorff. The class of separated frames includes that of strong Hausdorff frames and that of S frames. We shall show that the class of separated frames is a class closed under the formation of coproducts and subspaces, and the space Fil( L ) is Hausdorff for any separated frame L . Therefore there is a contravariant adjunction between the category TOP 2 of Hausdorff topological spaces and the category FRAM 2 of separated frames.