期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
双黄连注射剂成分与类过敏靶点的网络关联性分析 被引量:1
1
作者 张伟龙 贺红 +7 位作者 谯茹 贺鹏 李文姣 张良琦 刘晓轩 黄思琪 潘雪 贺福元 《中国实验方剂学杂志》 CAS CSCD 北大核心 2024年第19期190-197,共8页
目的:基于网络药理学体系和中药复方定量谱学,建立一种以平衡常数为核心的拓扑网络分析方法,以探究双黄连注射剂(SHLI)中可能引起类过敏的成分群及其与网络靶点之间的作用关系。方法:72只SPF级SD雄性大鼠适应性喂养1周后,随机分为空白组... 目的:基于网络药理学体系和中药复方定量谱学,建立一种以平衡常数为核心的拓扑网络分析方法,以探究双黄连注射剂(SHLI)中可能引起类过敏的成分群及其与网络靶点之间的作用关系。方法:72只SPF级SD雄性大鼠适应性喂养1周后,随机分为空白组、SHLI标准组、金银花组、黄芩组、连翘组与7组SHLI配比组(第1~7组),每组6只,对各组动物进行静脉滴注给药并在稳态后取血,建立各组试药及血浆成分的高效液相色谱法(HPLC)特征图谱,划分成分群并求算各组试药及血浆供试品中各成分群的峰面积变化值;采用酶联免疫吸附测定法(ELISA)测定动物血样中免疫球蛋白E(IgE)、组胺(HIS)、类胰蛋白酶(TPS)、总补体(CH50)和末端补体复合物(C5b-9)的类过敏指标变化情况;采用MATLAB R2020b v9.9.0软件计算各成分群与目标靶点的网络平衡常数及其构成矩阵的特征值,并根据其大小进行排序。结果:ELISA结果显示,与空白组比较,第1~3组IgE水平明显升高;第1~2组、第4~6组和SHLI标准组HIS水平明显升高;第4组CH50水平明显升高;第1组、第3~4组、金银花组和连翘组TPS水平明显升高;黄芩组C5b-9水平明显升高,差异均具有统计学意义(P<0.05)。根据色谱峰保留时间,在HPLC图谱上分为C1~C6共6个成分群。各成分群网络平衡常数大小排序为C6>C4>C1>C5>C3>C2,表明成分群C6对类过敏反应影响最大,最有可能为类致敏的反应原;特征值排序为C2>C5b-9>C3>C1>CH50>C6>C5>IgE>TPS>C4>HIS,表明成分群C2对于整个网络贡献度最大。结论:该研究基于SHLI成分群与类过敏靶点网络关联性分析,明确了成分群C6可能是双黄连注射剂中潜在的过敏原;成分群C2可能为药物作用机制的关键节点,可为中药注射剂致敏原的筛查提供新的策略和方法。 展开更多
关键词 双黄连 中药注射剂 类过敏反应 网络关联性 中药定量谱学 拓扑网络分析 高效液相色谱法(HPLC)
原文传递
A statistical end-to-end performance model for networks with complex topologies
2
作者 Chen Yanping Wang Huiqiang Gao Yulong 《High Technology Letters》 EI CAS 2012年第3期308-313,共6页
Network calculus provides new tools for performance analysis of networks, but analyzing networks with complex topologies is a challenging research issue using statistical network calculus. A service model is proposed ... Network calculus provides new tools for performance analysis of networks, but analyzing networks with complex topologies is a challenging research issue using statistical network calculus. A service model is proposed to characterize a service process of network with complex topologies. To obtain closed-form expression of statistical end-to-end performance bounds for a wide range of traffic source models, the traffic model and service model are expanded according to error function. Based on the proposed models, the explicit end-to-end delay bound of Fractional Brownian Motion(FBM) traffic is derived, the factors that affect the delay bound are analyzed, and a comparison between theoretical and simulation results is performed. The results illustrate that the proposed models not only fit the network behaviors well, but also facilitate the network performance analysis. 展开更多
关键词 statistical network calculus arrival curve service curve end-to-end delay bound
下载PDF
Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network
3
作者 徐传明 闫妍 +2 位作者 朱晓武 李晓腾 陈晓松 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第11期630-636,共7页
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from... The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance. 展开更多
关键词 conditional Granger causality network (G-causality network) network density IN-DEGREE out-degree
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部