Network calculus provides new tools for performance analysis of networks, but analyzing networks with complex topologies is a challenging research issue using statistical network calculus. A service model is proposed ...Network calculus provides new tools for performance analysis of networks, but analyzing networks with complex topologies is a challenging research issue using statistical network calculus. A service model is proposed to characterize a service process of network with complex topologies. To obtain closed-form expression of statistical end-to-end performance bounds for a wide range of traffic source models, the traffic model and service model are expanded according to error function. Based on the proposed models, the explicit end-to-end delay bound of Fractional Brownian Motion(FBM) traffic is derived, the factors that affect the delay bound are analyzed, and a comparison between theoretical and simulation results is performed. The results illustrate that the proposed models not only fit the network behaviors well, but also facilitate the network performance analysis.展开更多
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from...The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.展开更多
基金Supported by the National Natural Science Foundation Major Research Plan of China (No. 90718003), the National Natural Science Foundation of China (No. 60973027), and the National High Technology Research and Development Program of China (No. 2007AA01Z401 ).
文摘Network calculus provides new tools for performance analysis of networks, but analyzing networks with complex topologies is a challenging research issue using statistical network calculus. A service model is proposed to characterize a service process of network with complex topologies. To obtain closed-form expression of statistical end-to-end performance bounds for a wide range of traffic source models, the traffic model and service model are expanded according to error function. Based on the proposed models, the explicit end-to-end delay bound of Fractional Brownian Motion(FBM) traffic is derived, the factors that affect the delay bound are analyzed, and a comparison between theoretical and simulation results is performed. The results illustrate that the proposed models not only fit the network behaviors well, but also facilitate the network performance analysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos.7110317971102129+1 种基金11121403by Program for Young Innovative Research Team in China University of Political Science and Law
文摘The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.