The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues formi...The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.展开更多
To simulate a multivariate density with multi_hump, Markov chainMonte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practi...To simulate a multivariate density with multi_hump, Markov chainMonte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.展开更多
This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in ...This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in x and even in t, which are 1-periodic in t, and the function g satisfies g(x,t/x+, as|x| - +. Using the KAM theory for reversible systems, the author proves the existence of invariant tori and thus the boundedness of all the solutions and the existence of quasiperiodic solutions and subharmonic solutions.展开更多
electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which ar...electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.展开更多
An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic pro...An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.展开更多
文摘The tyrosine kinase receptor vascular endothelial growth factor receptor 2 (VEG FR2) is a key regulator of angiogenesis. Here we show that VEGFR2 is acetylated in endothelial cells both at four lysine residues forming a dense cluster in the kinase insert domain and at a single lysine located in the receptor activation loop. These modifications are under dynamic control of the acetyltransferase p300 and two deacetyiases HDAC5 and HDAC6. We demonstrate that VEGFR2 acetylation essentially regulates receptor phosphorylation. In par- ticular, VEGFR2 acetylation significantly alters the kinetics of receptor phosphorylation after ligand binding, allowing receptor phos- phoryiation and intraceUular signaling upon proLonged stimulation with VEGF. Molecular dynamics simulations indicate that acetylation of the lysine in the activation loop contributes to the transition to an open active state, in which tyrosine phosphorylation is favored by better exposure of the kinase target residues. These findings indicate that post-translational modification by acetyiation is a critical mechanism that directLy affects VEGFR2 function.
文摘To simulate a multivariate density with multi_hump, Markov chainMonte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.
文摘This paper is concerned with the boundedness of solutions for second order differential equations x + f(x, t)x + g(x, t) = 0, which are neither dissipative nor conservative, and where the functions f and g are odd in x and even in t, which are 1-periodic in t, and the function g satisfies g(x,t/x+, as|x| - +. Using the KAM theory for reversible systems, the author proves the existence of invariant tori and thus the boundedness of all the solutions and the existence of quasiperiodic solutions and subharmonic solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11372313, U1562105, and 11611130019)the Chinese Academy of Sciences (CAS) through CAS Interdisciplinary Innovation Team Project, the CAS Key Research Program of Frontier Sciences (Grant No. QYZDJ-SSW-JSC019)the CAS Strategic Priority Research Program (Grant No. XDB22040401)
文摘electrolyte. The properties of lithium-ion (Li-ion) battery, such as cycle life, irreversible capacity loss, self-discharge rate, electrode corrosion and safety are usually ascribed to the quality of the SEI, which are highly dependent on the thickness. Thus, understanding the formation mechanism and the SEI thickness is of prime interest. First, we apply dimensional analysis to obtain an explicit relation between the thickness and the number density in this study. Then the SEI thickness in the initial charge-discharge cycle is analyzed and estimated for the first time using the Cahn-Hilliard phase-field model. In addition, the SEI thickness by molecular dynamics simulation validates the theoretical results. It has been shown that the established model and the simulation in this paper estimate the SEI thickness concisely within order-of-magnitude of nanometers. Our results may help in evaluating the performance of SEI and assist the future design of Li-ion battery.
基金the Portuguese Foundation for Science and Technology (FCT) for the given support to the grant SFRH/BPD/71686the project PTDC/AAC-AMB/103119/2008
文摘An exergy analysis was performed considering the combustion of methane and agro-industrial residues produced in Portugal (forest residues and vines pruning). Regarding that the irreversibilities of a thermodynamic process are path dependent, the combustion process was considering as resulting from different hypothetical paths each one characterized by four main sub-processes: reactant mixing, fuel oxidation, internal thermal energy exchange (heat transfer), and product mixing. The exergetic efficiency was computed using a zero dimensional model developed by using a Visual Basic home code. It was concluded that the exergy losses were mainly due to the internal thermal energy exchange sub-process. The exergy losses from this sub-process are higher when the reactants are preheated up to the ignition temperature without previous fuel oxidation. On the other hand, the global exergy destruction can be minored increasing the pressure, the reactants temperature and the oxygen content on the oxidant stream. This methodology allows the identification of the phenomena and processes that have larger exergy losses, the understanding of why these losses occur and how the exergy changes with the parameters associated to each system which is crucial to implement the syngas combustion from biomass products as a competitive technology.