期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
拟右半群及其特征
1
作者 袁莹 任学明 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2006年第5期721-723,共3页
半群S称为拟正则的,如果关于每一个元素a∈S,存在自然数n及元素x∈S使得an=an×an.半群S称为具左中心幂等元,如果关于任意x,y∈S1,y≠1,及任意幂等元e∈S,使得x∈y=e×y.具有左中心幂等元的正则半群和富足半群早在1999年已由岑... 半群S称为拟正则的,如果关于每一个元素a∈S,存在自然数n及元素x∈S使得an=an×an.半群S称为具左中心幂等元,如果关于任意x,y∈S1,y≠1,及任意幂等元e∈S,使得x∈y=e×y.具有左中心幂等元的正则半群和富足半群早在1999年已由岑嘉评和任学明研究.本文讨论具有左中心幂等元的拟正则半群及其代数性质.文中首先定义了拟右半群,证明了拟右半群为拟右群的半格,进而给出了拟右半群的若干代数特征. 展开更多
关键词 正则半 完全正则半 半格 拟右半群
下载PDF
一类拟正则半群的性质和特征
2
作者 袁莹 宫春梅 马思遥 《纺织高校基础科学学报》 CAS 2007年第1期72-74,99,共4页
定义了一类拟正则半群,即拟右半群.利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1)S为拟完全正则半群;(2)RegS为完全正则半群;(3)R*为S上的最小半格同余;(4)RegS上的每个R-类Tα为右群;(5)TαGα×Eα,其中Gα为群,E... 定义了一类拟正则半群,即拟右半群.利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1)S为拟完全正则半群;(2)RegS为完全正则半群;(3)R*为S上的最小半格同余;(4)RegS上的每个R-类Tα为右群;(5)TαGα×Eα,其中Gα为群,Eα为右零半群.在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1)S为拟右半群;(2)S为拟完全正则的,RegS为S的理想;(3)S为右群强半格的诣零理想扩张. 展开更多
关键词 正则半 拟右半群 强半格
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部