The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former...The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former part of the mixing chamber with varied stagnation pressure ratio of the primary and secondary flows have been taken,and the maximum compression ratios have been obtained.Additionally,the relevant numerical simulations have been performed.The obtained results show that the pressure matching performance of the second-throat supersonic-supersonic ejector is weaker than that of the constant area one,and the pressure recovery performance of the former is better than that of the latter.For the ejectors tested in this paper,the stagnation pressure ratios of the second-throat supersonic-supersonic ejector at the limiting condition are approximately 10% lower than those of the constant area one when the contraction angle of the mixing chamber is 4°,and the maximum compression ratio is 12%-30% higher.When the contraction angle of the mixing chamber is 6°,the pressure matching performance of the second-throat supersonic-supersonic ejector declines sharply,and the pressure recovery performance remains almost the same.When the contraction angle of the mixing chamber is 8°,the supersonic-supersonic ejection phenomenon does not take place any longer.展开更多
Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorit...Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorithm, is proposed in this paper. The algorithm is based on the principle of least mean-square-error criterion, and searches for a certain matched trajectory that runs parallel to a trace indicated by an inertial navigation system on a gravity base map. A rotation is then made clockwise or counterclockwise through a certain angle around the matched trajectory to look for an optimal matched trajectory within a certain angle span range, and through weighted fitting with another eight suboptimal matched trajectories, the endpoint of the fitted trajectory is considered the optimal matched position. In analysis of the algorithm reliability and matching error, the results from simulation indicate that the optimal position can be obtained effectively in real time, and the positioning accuracy improves by 35% and up to 1.05 nautical miles using the proposed algorithm compared with using the widely employed TERCOM and SITAN methods. Current gravity-aided navigation can benefit from implementation of this new algorithm in terms of better reliability and positioning accuracy.展开更多
Nuclear decay is investigated by the view of network science and the relationship of nuclear decay among different radionuclide can be mapped to a network topology directly.The network includes 1410 nodes and 1275 edg...Nuclear decay is investigated by the view of network science and the relationship of nuclear decay among different radionuclide can be mapped to a network topology directly.The network includes 1410 nodes and 1275 edges.The average degree of the network of nuclear decay is about 1.8,the cumulative degree distribution still meets the typical power-law distribution,and the corresponding exponent is about 4.1.Not considering their dynamic behavior,the fitting parameters of the nuclear decay network are obtained according to the LUHNM theory proposed by our group before.Their cumulated degree distributions of the nuclear decay network match well.The idea and method may provide a new way to study some other problems of nuclear physics.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11172324)
文摘The pressure matching and recovery performances of the second-throat supersonic-supersonic ejector have been performed experimentally and numerically in the current study.Schlieren pictures of flow structure in former part of the mixing chamber with varied stagnation pressure ratio of the primary and secondary flows have been taken,and the maximum compression ratios have been obtained.Additionally,the relevant numerical simulations have been performed.The obtained results show that the pressure matching performance of the second-throat supersonic-supersonic ejector is weaker than that of the constant area one,and the pressure recovery performance of the former is better than that of the latter.For the ejectors tested in this paper,the stagnation pressure ratios of the second-throat supersonic-supersonic ejector at the limiting condition are approximately 10% lower than those of the constant area one when the contraction angle of the mixing chamber is 4°,and the maximum compression ratio is 12%-30% higher.When the contraction angle of the mixing chamber is 6°,the pressure matching performance of the second-throat supersonic-supersonic ejector declines sharply,and the pressure recovery performance remains almost the same.When the contraction angle of the mixing chamber is 8°,the supersonic-supersonic ejection phenomenon does not take place any longer.
基金supported by National Natural Science Foundation of China (Grant Nos. 41074051, 41021003 and 40874037)
文摘Gravity/inertial combination navigation is a leading issue in realizing passive navigation onboard a submarine. A new rotation-fitting gravity matching algorithm, based on the Terrain Contour Matching (TERCOM) algorithm, is proposed in this paper. The algorithm is based on the principle of least mean-square-error criterion, and searches for a certain matched trajectory that runs parallel to a trace indicated by an inertial navigation system on a gravity base map. A rotation is then made clockwise or counterclockwise through a certain angle around the matched trajectory to look for an optimal matched trajectory within a certain angle span range, and through weighted fitting with another eight suboptimal matched trajectories, the endpoint of the fitted trajectory is considered the optimal matched position. In analysis of the algorithm reliability and matching error, the results from simulation indicate that the optimal position can be obtained effectively in real time, and the positioning accuracy improves by 35% and up to 1.05 nautical miles using the proposed algorithm compared with using the widely employed TERCOM and SITAN methods. Current gravity-aided navigation can benefit from implementation of this new algorithm in terms of better reliability and positioning accuracy.
基金Supported by National Natural Science Foundation of China under Grant Nos. 60874087 and 61174151
文摘Nuclear decay is investigated by the view of network science and the relationship of nuclear decay among different radionuclide can be mapped to a network topology directly.The network includes 1410 nodes and 1275 edges.The average degree of the network of nuclear decay is about 1.8,the cumulative degree distribution still meets the typical power-law distribution,and the corresponding exponent is about 4.1.Not considering their dynamic behavior,the fitting parameters of the nuclear decay network are obtained according to the LUHNM theory proposed by our group before.Their cumulated degree distributions of the nuclear decay network match well.The idea and method may provide a new way to study some other problems of nuclear physics.