期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的城市道路沥青路面病害智能检测仿真实验 被引量:1
1
作者 杨盼盼 郭杨成 《粘接》 CAS 2023年第12期174-178,共5页
为提高城市道路沥青路面病害检测精度,提出一种基于深度学习的智能检测方法。方法以Faster R-CNN网络为基础检测模型,通过对采用拟合值填充方式优化Faster R-CNN网络卷积层,提升网络对目标检测的准确性,实现了Faster R-CNN网络的改进;... 为提高城市道路沥青路面病害检测精度,提出一种基于深度学习的智能检测方法。方法以Faster R-CNN网络为基础检测模型,通过对采用拟合值填充方式优化Faster R-CNN网络卷积层,提升网络对目标检测的准确性,实现了Faster R-CNN网络的改进;然后利用改进后的Faster R-CNN网络对城市道路沥青路面病害进行检测,实现了沥青路面病害的智能检测。仿真结果表明,所提的改进Faster R-CNN网络可有效检测城市道路沥青路面坑槽、裂缝病害,且具有较高的检测精度,平均精确度的均值达到为90.26%。相较于标准Faster R-CNN网络和ResNet、U-Net目标检测算法,在平均精确度的均值和单张图像的检测速度指标上具有明显优势,可用于实际城市道路沥青路面病害检测。 展开更多
关键词 路面病害检测 深度学习 Faster R-CNN网络 拟合值填充
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部