期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习的城市道路沥青路面病害智能检测仿真实验
被引量:
1
1
作者
杨盼盼
郭杨成
《粘接》
CAS
2023年第12期174-178,共5页
为提高城市道路沥青路面病害检测精度,提出一种基于深度学习的智能检测方法。方法以Faster R-CNN网络为基础检测模型,通过对采用拟合值填充方式优化Faster R-CNN网络卷积层,提升网络对目标检测的准确性,实现了Faster R-CNN网络的改进;...
为提高城市道路沥青路面病害检测精度,提出一种基于深度学习的智能检测方法。方法以Faster R-CNN网络为基础检测模型,通过对采用拟合值填充方式优化Faster R-CNN网络卷积层,提升网络对目标检测的准确性,实现了Faster R-CNN网络的改进;然后利用改进后的Faster R-CNN网络对城市道路沥青路面病害进行检测,实现了沥青路面病害的智能检测。仿真结果表明,所提的改进Faster R-CNN网络可有效检测城市道路沥青路面坑槽、裂缝病害,且具有较高的检测精度,平均精确度的均值达到为90.26%。相较于标准Faster R-CNN网络和ResNet、U-Net目标检测算法,在平均精确度的均值和单张图像的检测速度指标上具有明显优势,可用于实际城市道路沥青路面病害检测。
展开更多
关键词
路面病害检测
深度学习
Faster
R-CNN网络
拟合值填充
下载PDF
职称材料
题名
基于深度学习的城市道路沥青路面病害智能检测仿真实验
被引量:
1
1
作者
杨盼盼
郭杨成
机构
南京工业大学浦江学院土木与建筑工程学院
华设设计集团股份有限公司
出处
《粘接》
CAS
2023年第12期174-178,共5页
文摘
为提高城市道路沥青路面病害检测精度,提出一种基于深度学习的智能检测方法。方法以Faster R-CNN网络为基础检测模型,通过对采用拟合值填充方式优化Faster R-CNN网络卷积层,提升网络对目标检测的准确性,实现了Faster R-CNN网络的改进;然后利用改进后的Faster R-CNN网络对城市道路沥青路面病害进行检测,实现了沥青路面病害的智能检测。仿真结果表明,所提的改进Faster R-CNN网络可有效检测城市道路沥青路面坑槽、裂缝病害,且具有较高的检测精度,平均精确度的均值达到为90.26%。相较于标准Faster R-CNN网络和ResNet、U-Net目标检测算法,在平均精确度的均值和单张图像的检测速度指标上具有明显优势,可用于实际城市道路沥青路面病害检测。
关键词
路面病害检测
深度学习
Faster
R-CNN网络
拟合值填充
Keywords
road surface disease detection
deep learning
faster R-CNN network
fit value filling
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习的城市道路沥青路面病害智能检测仿真实验
杨盼盼
郭杨成
《粘接》
CAS
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部