Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun ...Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration.展开更多
In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their uppe...In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their upper bounds are given. For the problem of estimating the median,some optimum estimating functions based on the information matrices are acquired. Undersome regularity conditions, an approach to carrying out the best basis function is introduced. Innonlinear regression models, an optimum estimating function based on the information matricesis obtained. Some examples are given to illustrate the results. Finally, the concept of optimumestimating function and the methods of constructing optimum estimating function are developedin more general statistical models.展开更多
文摘Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration.
基金Project supported by the National Natural Science Foundation of China(No.10171051)and the Youth Teacher Foundation of Nankai University.
文摘In order to construct estimating functions in some parametric models, this paper introducestwo classes of information matrices. Some necessary and sufficient conditions for the informationmatrices achieving their upper bounds are given. For the problem of estimating the median,some optimum estimating functions based on the information matrices are acquired. Undersome regularity conditions, an approach to carrying out the best basis function is introduced. Innonlinear regression models, an optimum estimating function based on the information matricesis obtained. Some examples are given to illustrate the results. Finally, the concept of optimumestimating function and the methods of constructing optimum estimating function are developedin more general statistical models.