A micro-robot with 4 DOFs is presented in this paper. An inchworm-like biped mechanical structure is selected with the advantages of small size and minimal weight. It can walk on wall as an inchworm with two different...A micro-robot with 4 DOFs is presented in this paper. An inchworm-like biped mechanical structure is selected with the advantages of small size and minimal weight. It can walk on wall as an inchworm with two different locomotion modes such as crawling and overturn. With rotation mode, this robot can change it' s motion direction. The robot can also transit between different surfaces. The kinematics model of the robot has been analyzed. A DSP based embedded controller is used for minimal power consumption and efficient control. The micro-robot can move flexibly and fit complicated un-structural environment well.展开更多
A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The ...A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.展开更多
文摘A micro-robot with 4 DOFs is presented in this paper. An inchworm-like biped mechanical structure is selected with the advantages of small size and minimal weight. It can walk on wall as an inchworm with two different locomotion modes such as crawling and overturn. With rotation mode, this robot can change it' s motion direction. The robot can also transit between different surfaces. The kinematics model of the robot has been analyzed. A DSP based embedded controller is used for minimal power consumption and efficient control. The micro-robot can move flexibly and fit complicated un-structural environment well.
基金Project(2007AA04Z256) supported by the National High-Tech Research and Development Program of China
文摘A unilateral self-locking mechanism(USM) was proposed to increase the tractive ability of the inchworm in-pipe robots for pipeline inspection.The USM was basically composed of a cam,a torsional spring and an axis.The self-locking and virtual work principles were applied to studying the basic self-locking condition of the USM.In order to make the cooperation between the crutch and telescopic mechanism more harmonical,the unlocking time of the USM was calculated.A set of parameters were selected to build a virtual model and fabricate a prototype.Both the simulation and performance experiments were carried out in a pipe with a nominal inside diameter of 160 mm.The results show that USM enables the robot to move quickly in one way,and in the other way it helps the robot get self-locking with the pipe wall.The traction of the inchworm robot can rise to 1.2 kN,beyond the limitation of friction of 0.497 kN.