With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed tha...With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed that the rotor faults, whether exist or not, and the causes of the faults may be determined through the monitoring of the average value of the exciting current of the exciter and its principal harmonics.展开更多
Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforc...Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforcing layers on the compressive deformation behavior of porous composites was investigated through micro-computed tomography(Micro-CT)and finite element method(FEM)analyses.The results indicate that the addition of reinforcement layers to sandwich structures can significantly enhance the compressive yield strength and energy absorption capacity of porous metal structures;Micro-CT in-situ observation shows that the strain of the porous structure without the reinforcing layer is concentrated in the middle region,while the strain of the porous structure with the reinforcing layer is uniformly distributed;FEM analysis reveals that the reinforcing layers can alter stress distribution and reduce stress concentration,thereby promoting uniform deformation of the porous structure.The addition of reinforcing layer increases the compressive yield strength of sandwich-structured composite materials by 124%under the condition of limited reduction of porosity,and the yield strength increases from 4.6 to 10.3 MPa.展开更多
In order to study fracture behaviors of asphalt mixtures, virtual tests of the two-dimensional(2D) microstructure based on the discrete element method( DEM) are designed. The virtual structure of the 2D digital sp...In order to study fracture behaviors of asphalt mixtures, virtual tests of the two-dimensional(2D) microstructure based on the discrete element method( DEM) are designed. The virtual structure of the 2D digital specimen of asphalt mixture is generated based on a particle generation program, in which the gradation and the irregular shapes of aggregates are considered. With the 2D digital specimens, a DEM-based mixture model is established and center-point beam fracture simulation tests are conducted by the DEM. Meanwhile, a series of calibration tests are carried out in laboratory to evaluate the DEM model and validate the methods of virtual fracture tests. The test results indicate that the fracture intensity of asphalt mixtures predicted by the DEM matches very well with the intensity obtained in laboratory. It is concluded that the microstructural virtual tests can be used as a supplemental tool to evaluate fracture properties of asphalt mixtures.展开更多
Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimi...Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.展开更多
In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best av...In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.展开更多
Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an...Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.展开更多
Fracture system plays a very important role in the enrichment and accumulation of oil and gas in the reservoirs. Based on scattering wave information, Fracture Orientation Function (FOF) was built, which can be used...Fracture system plays a very important role in the enrichment and accumulation of oil and gas in the reservoirs. Based on scattering wave information, Fracture Orientation Function (FOF) was built, which can be used to predict the fracture orientations. However, this method has only been verified by physical experiments without studies on the application scope. In this study, based on the linear sliding theory, F0F of the scattering wave was applied to the numerical simulation and the application scope was further studied according to fracture flexibility tensor. According to the fractures filled with gas and liquid, numerical simulation was conducted on the models with various fracture flexibilities. Numerical simulation results were used to inverse fracture orientation with the aid of the FOF of the scattering wave. The results show that it is workable to predict the vertical fracture orientation with the F0F of the scattering wave. Application of this method is more effective when the fractures are filled with gas than liquid. Moreover, the application scope can be predicted by the fracture flexibility.展开更多
This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interfe...This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interferers are independent non-identically distributed K-μfading. An accurate analytical-form expression for the cumulative distribution function of the received signal power to interference and noise ratio is derived. Various numerical results are compared with Monte Carlo simulation results in order to corroborate the accuracy of the proposed expressions. Our results show that increasing the value of kappa of main links will decrease the outage probability of relay systems. Furthermore, the system performance degrades with the number of interferences.展开更多
The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex g...The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex geometry.This paper represents a study of the origins of the LOFZ regional stress field.Stress fields are calculated by finite element(FE) analysis.The two possible stress origins, i.e., oblique plate convergence and ridge collision/indenter tectonics of Chile ridge against Peru-Chile trench, have been emphasized in the present study.Three types of boundary conditions for the three particular models have been applied to calculate stress fields.Models are assumed to be elastic and plane stress condition.Modeling results are presented in terms of four parameters, i.e., orientation of maximum horizontal stress(σ H max ), displacement vector, s train distribution, and maximum shear stress(τmax ) contour line within the model.The results of the first model with oblique plate convergence show inconsistency between the geometric shape of the LOFZ and the distribution of the four parameters.Although more realistic results are obtained from the second model with normal ridge collision, there are few coincident in the LOFZ geometry and regional stress field.The third model with normal and oblique ridge collision is reasonable in understanding the origin of stress field and geometrical condition in the lithosphere of the LOFZ.展开更多
文摘With a three-phase bridge type rectification, some typical rotor faults of a brushless AC generator with a rotary rectifier is analyzed in this paper by the help of computer digital simulation. It is also proPOsed that the rotor faults, whether exist or not, and the causes of the faults may be determined through the monitoring of the average value of the exciting current of the exciter and its principal harmonics.
基金the Hunan Young Scientific Innovative Talents Program,China(No.2020RC3040)Outstanding Youth Fund of Hunan Natural Science Foundation,China(Nos.2021JJ20011,2021JJ40600,2021JJ40590)the National Natural Science Foundation of China(Nos.52001030,52204371)..
文摘Beta Ti−35Nb sandwich-structured composites with various reinforcing layers were designed and produced using additive manufacturing(AM)to achieve a balance between light weight and high strength.The impact of reinforcing layers on the compressive deformation behavior of porous composites was investigated through micro-computed tomography(Micro-CT)and finite element method(FEM)analyses.The results indicate that the addition of reinforcement layers to sandwich structures can significantly enhance the compressive yield strength and energy absorption capacity of porous metal structures;Micro-CT in-situ observation shows that the strain of the porous structure without the reinforcing layer is concentrated in the middle region,while the strain of the porous structure with the reinforcing layer is uniformly distributed;FEM analysis reveals that the reinforcing layers can alter stress distribution and reduce stress concentration,thereby promoting uniform deformation of the porous structure.The addition of reinforcing layer increases the compressive yield strength of sandwich-structured composite materials by 124%under the condition of limited reduction of porosity,and the yield strength increases from 4.6 to 10.3 MPa.
基金The National High Technology Research and Development Program of China(863 Program)(No.2006AA11Z110)the Researchand Innovation Foundation for Graduate Students in Jiangsu Province(No.CX07B-156Z)the Excellent Doctoral Dissertation Foundation of Southeast University
文摘In order to study fracture behaviors of asphalt mixtures, virtual tests of the two-dimensional(2D) microstructure based on the discrete element method( DEM) are designed. The virtual structure of the 2D digital specimen of asphalt mixture is generated based on a particle generation program, in which the gradation and the irregular shapes of aggregates are considered. With the 2D digital specimens, a DEM-based mixture model is established and center-point beam fracture simulation tests are conducted by the DEM. Meanwhile, a series of calibration tests are carried out in laboratory to evaluate the DEM model and validate the methods of virtual fracture tests. The test results indicate that the fracture intensity of asphalt mixtures predicted by the DEM matches very well with the intensity obtained in laboratory. It is concluded that the microstructural virtual tests can be used as a supplemental tool to evaluate fracture properties of asphalt mixtures.
文摘Based on the convection and diffusion mechanisms of radon migration, in this paper we deduce the two-dimensional differential equation for radon transportation in the overburden above active fault zones with an unlimited extension along the strike. Making use of the finite difference method, the radon concentration distribution in the overburden above active faults is calculated and modeled. The active fault zone parameters, such as the depth and the width of the fault zone, and the value of radon concentration, can be inverted from the measured radon concentration curve. These realize quantitative interpretation for radon concentration anomalies. The inversion results are in good agreement with the actual fault zone parameters.
基金sponsored by the Chinese National Development and Reform Commission(No.[2005]2372)the Innovative Technological Research Foundation of PetroChina Company Limited(No.060511-1-3)
文摘In elastic wave forward modeling, absorbing boundary conditions (ABC) are used to mitigate undesired reflections from the model truncation boundaries. The perfectly matched layer (PML) has proved to be the best available ABC. However, the traditional splitting PML (SPML) ABC has some serious disadvantages: for example, global SPML ABCs require much more computing memory, although the implementation is easy. The implementation of local SPML ABCs also has some difficulties, since edges and corners must be considered. The traditional non-splitting perfectly matched layer (NPML) ABC has complex computation because of the convolution. In this paper, based on non-splitting perfectly matched layer (NPML) ABCs combined with the complex frequency-shifted stretching function (CFS), we introduce a novel numerical implementation method for PML absorbing boundary conditions with simple calculation equations, small memory requirement, and easy programming.
基金Projects(50934002,51074013,51104100)supported by the National Natural Science Foundation of ChinaProject(IRT0950)supported by the Program for Changjiang Scholars and Innovative Research Team in University of China
文摘Room and pillar sizes are key factors for safe mining and ore recovery in open-stope mining. To investigate the influence of room and pillar configurations on stope stability in highly fractured and weakened areas, an orthogonal design with two factors, three levels and nine runs was proposed, followed by three-dimensional numerical simulation using ANSYS and FLAC3~. Results show that surface settlement after excavation is concentrically ringed, and increases with the decrease of pillar width and distances to stope gobs. In the meantime, the ore-control fault at the ore-rock boundary and the fractured argillaceous dolomite with intercalated slate at the hanging wall deteriorate the roof settlement. Additionally, stope stability is challenged due to pillar rheological yield and stress concentration, and both are induced by redistribution of stress and plastic zones after mining. Following an objective function and a constraint function, room and pillar configuration with widths of 14 m and 16 m, respectively, is presented as the optimization for improving the ore recovery rate while maintaining a safe working environment.
基金supported by the National Basic Research Program of China ( No. 2014CB239104 and No. 2012CB214800)National Science and Technology Major Project of the Ministry of Science and Technology of China ( No. 2011ZX05066-002)
文摘Fracture system plays a very important role in the enrichment and accumulation of oil and gas in the reservoirs. Based on scattering wave information, Fracture Orientation Function (FOF) was built, which can be used to predict the fracture orientations. However, this method has only been verified by physical experiments without studies on the application scope. In this study, based on the linear sliding theory, F0F of the scattering wave was applied to the numerical simulation and the application scope was further studied according to fracture flexibility tensor. According to the fractures filled with gas and liquid, numerical simulation was conducted on the models with various fracture flexibilities. Numerical simulation results were used to inverse fracture orientation with the aid of the FOF of the scattering wave. The results show that it is workable to predict the vertical fracture orientation with the F0F of the scattering wave. Application of this method is more effective when the fractures are filled with gas than liquid. Moreover, the application scope can be predicted by the fracture flexibility.
基金supported by the NSFC project under grant No.61101237the Fundamental Research Funds for the Central Universities No.2014JBZ001
文摘This paper provides an analytical framework for the outage probability evaluation of dual-hop decode-and-forward relay systems operating over K-μfading channels in the presence of co-channel interference. The interferers are independent non-identically distributed K-μfading. An accurate analytical-form expression for the cumulative distribution function of the received signal power to interference and noise ratio is derived. Various numerical results are compared with Monte Carlo simulation results in order to corroborate the accuracy of the proposed expressions. Our results show that increasing the value of kappa of main links will decrease the outage probability of relay systems. Furthermore, the system performance degrades with the number of interferences.
文摘The Liquine-Ofqui Fault Zone(LOFZ) of southern Chilean Andes is one of the largest active strike-slip fault zones.There is an ongoing debate regarding the origin of the stress field along the LOFZ due to its complex geometry.This paper represents a study of the origins of the LOFZ regional stress field.Stress fields are calculated by finite element(FE) analysis.The two possible stress origins, i.e., oblique plate convergence and ridge collision/indenter tectonics of Chile ridge against Peru-Chile trench, have been emphasized in the present study.Three types of boundary conditions for the three particular models have been applied to calculate stress fields.Models are assumed to be elastic and plane stress condition.Modeling results are presented in terms of four parameters, i.e., orientation of maximum horizontal stress(σ H max ), displacement vector, s train distribution, and maximum shear stress(τmax ) contour line within the model.The results of the first model with oblique plate convergence show inconsistency between the geometric shape of the LOFZ and the distribution of the four parameters.Although more realistic results are obtained from the second model with normal ridge collision, there are few coincident in the LOFZ geometry and regional stress field.The third model with normal and oblique ridge collision is reasonable in understanding the origin of stress field and geometrical condition in the lithosphere of the LOFZ.