期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
考虑拟流度比的蒸汽驱前缘预测模型研究 被引量:15
1
作者 程林松 刘东 +1 位作者 高海红 周凤军 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期159-162,共4页
Van Lookeren研究了拟流度比为0时的蒸汽驱前缘预测模型,提出形状因子取得最大值时的注汽参数为最优参数。而在实际油藏中,由于地层中原油黏度较大,或注汽速率较小,拟流度比往往较大,此时利用最大形状因子优化注汽参数受到限制。针对该... Van Lookeren研究了拟流度比为0时的蒸汽驱前缘预测模型,提出形状因子取得最大值时的注汽参数为最优参数。而在实际油藏中,由于地层中原油黏度较大,或注汽速率较小,拟流度比往往较大,此时利用最大形状因子优化注汽参数受到限制。针对该情形,应用数学方法研究了拟流度比不为0时的蒸汽驱前缘预测模型。绘制了形状因子、拟流度比、注汽速率与前缘形状关系图版,发现增大注汽速率,可增大形状因子,从而减小拟流度比,减轻蒸汽超覆程度,提高前缘驱的波及效率。由于注汽速率受注汽压力限制,研究了注汽速率与注汽压力的协调关系,利用该关系和研究的前缘模型,对前人的注汽参数优化方法进行了改进。 展开更多
关键词 蒸汽驱前缘 拟流度比 形状因子 注汽速率 参数优化
下载PDF
考虑油相启动压力梯度的蒸汽前缘数学模型 被引量:3
2
作者 丁祖鹏 罗艳艳 +1 位作者 程林松 沈杨 《科学技术与工程》 北大核心 2014年第5期46-48,共3页
稠油热采过程中,蒸汽前缘的移动规律一直受到人们的重视。稠油地下渗流具有非牛顿特征,多数研究者考虑了蒸汽超覆和拟流度比对蒸汽前缘的影响;但是未考虑稠油的启动压力梯度。针对稠油非牛顿特征,通过对蒸汽前缘上边界进行表征,建立了... 稠油热采过程中,蒸汽前缘的移动规律一直受到人们的重视。稠油地下渗流具有非牛顿特征,多数研究者考虑了蒸汽超覆和拟流度比对蒸汽前缘的影响;但是未考虑稠油的启动压力梯度。针对稠油非牛顿特征,通过对蒸汽前缘上边界进行表征,建立了同时考虑启动压力梯度、蒸汽前缘上边界变化和拟流度比的蒸汽前缘数学模型,弥补了现行蒸汽前缘数学模型的一个缺陷。通过进行差分离散及Matlab数值计算,得到了形状因子、拟流度比与蒸汽前缘形状关系图版。结果表明,蒸汽前缘上边界随着启动压力梯度的增大而减小,增大形状因子或减小拟流度比,均可降低蒸汽超覆程度,提高蒸汽前缘的波及效率。 展开更多
关键词 蒸汽前缘 启动压力梯度 拟流度比
下载PDF
超稠油直井汽驱蒸汽腔演化模型
3
作者 付金刚 杜殿发 +1 位作者 李东元 巴忠臣 《内蒙古石油化工》 CAS 2017年第Z1期146-150,共5页
超稠油在蒸汽驱过程中,蒸汽腔的演化过程直接影响到油藏的最终采收率。许多学者对稠油蒸汽驱前缘模型进行了研究,但大多未考虑超稠油汽驱过程中蒸汽超覆和拟流度比的影响,也未考虑蒸汽径向速率的影响,导致对超稠油蒸汽驱的演化过程描述... 超稠油在蒸汽驱过程中,蒸汽腔的演化过程直接影响到油藏的最终采收率。许多学者对稠油蒸汽驱前缘模型进行了研究,但大多未考虑超稠油汽驱过程中蒸汽超覆和拟流度比的影响,也未考虑蒸汽径向速率的影响,导致对超稠油蒸汽驱的演化过程描述不够准确。为了进一步探究蒸汽腔在超稠油油藏中的演化规律,在考虑超稠油中蒸汽超覆、拟流度比及径向蒸汽速率影响下,基于汽液界面理论、应用数学积分等方法研究了蒸汽前缘形状,建立了超稠油直井汽驱蒸汽腔演化模型,从而精细刻画了蒸汽腔的演化过程。利用该模型分析了各参数对蒸汽腔演化过程的影响。结果表明:在超稠油汽驱过程中,蒸汽腔不断发育且蒸汽主要在油藏上部流动;对于较高的注汽速率、较小的拟流度比以及较大的蒸汽径向速率系数都有利于蒸汽腔的均匀发育。 展开更多
关键词 超稠油 蒸汽驱 重力超覆 蒸汽腔演化 拟流度比
下载PDF
A Comparison of Experimental and Numerical Studies Performed on a Low-Pressure Turbine Blade Cascade at High-Speed Conditions, Low Reynolds Numbers and Various Turbulence Intensities
4
作者 Jan Michalek Petr Straka 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第5期413-423,共11页
This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Math numbers (from 0.5 - 1.1)... This paper focuses on a comparison of experimental and numerical investigations performed on a low-pressure mid-loaded turbine blade at operating conditions comprised of a wide range of Math numbers (from 0.5 - 1.1), Reynolds numbers (from 0.4e+5 - 3.0e+5), flow incidence (-15 - 15 degrees) and three levels of free-stream tur- bulence intensities (2, 5 and 10%). The experimental part of the work was performed in a high-speed linear cas- cade wind tunnel. The increased levels of turbulence were achieved by a passive grid placed at the cascade inlet. A two-dimensional flow field at the center of the blade was traversed pitch-wise upstream and downstream the cascade by means of a five-bole probe and a needle pressure probe, respectively. The blade loading was measured using the surface pressure taps evenly deployed at the blade mid-span along the suction and the pressure side. The inlet turbulence was investigated using the constant temperature anemometer technique with a dual sensor probe. Experimentally evaluated values of turbulent kinetic energy and its dissipation rate were then used as inputs for the numerical simulations. An in-house code based on a system of the Favre-averaged Navier-Stokes equation closed by a two-equation k-co turbulence model was adopted for the predictions. The code utilizes an algebraic model of bypass transition valid both for attached as for separated flows taking in account the effect of free-stream turbulence and pressure gradient. The resulting comparison was carried out in terms of the kinetic en- ergy loss coefficient, distributions of downstream wakes and blade velocity. Additionally a flow visualization was performed by means of the Schlieren technique in order to provide a further understanding of the studied phe- nomena. A few selected cases with a particular interest in the attached and separated flow transition are compared and discussed. 展开更多
关键词 low pressure turbine high-speed flow low Reynolds number flow separation transition RANS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部