A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced duri...A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.展开更多
Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Suc...Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.展开更多
An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal a...An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.展开更多
Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modelin...Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modeling for direct gas reservoir identification. The workflow provides us with the information about reservoir and seismic but just at the well. For real reservoirs, the reservoir parameters such as porosity, clay content, and thickness vary with location. So the information from traditional fluid substitution just at the well is limited. By assuming a rock physics model linking the elastic properties to porosity and mineralogy, we conducted seismic forward modeling and AVO attributes computation on a three-layer earth model with varying porosity, clay content, and formation thickness. Then we analyzed the relations between AVO attributes at wet reservoirs and those at the same but gas reservoirs. We arrived at their linear relations within the assumption framework used in the forward modeling. Their linear relations make it possible to directly conduct fluid substitution on seismic AVO attributes. Finally, we applied these linear relations for fluid substitution on seismic data and identified gas reservoirs by the cross-plot between the AVO attributes from seismic data and those from seismic data after direct fluid substitution.展开更多
For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are rel...For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.展开更多
This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. ...This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.展开更多
The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic ...The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump(LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase(gas) or as a secondary discrete phase(particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.展开更多
Purpose: The purpose of this study was to determine the effect of horizontal and vertical velocities at the landing of the last step of approach run on the performance and optimal phase ratio of the triple jump. Meth...Purpose: The purpose of this study was to determine the effect of horizontal and vertical velocities at the landing of the last step of approach run on the performance and optimal phase ratio of the triple jump. Methods: Three-dimensional kinematic data of 13 elite male triple jumpers were obtained during a competition. Computer simulations were performed using a biomechanical model of the triple jump to determine the longest actual distance using the optimal phase ratio with altered horizontal and vertical velocities at the landing of the last step of approach run. Results: The actual distance obtained using the optimal phase ratio significantly increased as the horizontal velocity at the landing of the last step of approach run increased (p = 0.001) and the corresponding downward vertical velocity decreased (p = 0.001). Increasing horizontal velocity at the landing of the last step of approach run decreased optimal hop percentage and increased optimal jump percentage (p = 0.001), while decreasing corresponding downward vertical velocity increased optimal hop percentage and decreased optimal jump percentage (p = 0.001). Conclusion: The effects of the velocities at the landing of the last step of approach run on the optimal phase ratio were generally small and did not qualitatively alter optimal techniques.展开更多
The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dyna...The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations.展开更多
The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of ...The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in three-dimensions (3D) and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.展开更多
In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and ma...In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and manganese peroxidase (MnP) of the fungi was undertaken. Based on the Monod-Jacob operon model, the ligninolytic enzyme would be synthesized in the absence of a related repressor. The repressor is assumed to be active in the presence of ammonia nitrogen, and as combined as co-repressor, it causes the inhibition of enzyme synthesis. The model can explain the mechanism of extracellular ligninolytic enzyme production by white rot fungi. The results,as predicted by the model, correspond closely to those observed in experimental studies. In addition, some light is also shed on unmeasured variables, such as the concentrations of repressor and mRNA that are related to the enzyme synthesis.展开更多
The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the...The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.展开更多
Over the past 20 years, significant progress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ...Over the past 20 years, significant progress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ecol- ogy and remote sensing. As many biological processes are driven by light, it is the key for virtual plant to estimate the light absorbed by each organ. This paper presents the radiance equation suitable for calculating sun and sky light intercepted by plant organs based on the principles of the interaction between light and plant canopy firstly; analyzes the process principles of plant canopy primary lighting based on ray casting and projection secondly; describes the multiple scattering of plant lighting based on Monte Carlo ray tracing method and on the radiosity method thirdly; and confirms the research with 3D visualization based on Virtual Reality Modeling Language (VRML) finally. The research is the primary work of digital agriculture, and important for monitoring and estimating corn growth in Northeast China.展开更多
Plasma was purified in an immobilized L-asparaginase column. The predicted results are in good agreement with experimental data. It is indicated that the mathematical model is suitable for the mass transfer and react...Plasma was purified in an immobilized L-asparaginase column. The predicted results are in good agreement with experimental data. It is indicated that the mathematical model is suitable for the mass transfer and reaction of blood purification.展开更多
The code COCOSYS (Containment Code System) was developed by GRS (Gesellschaft fur Anlagen-und Reaktorsicherheit) in Germany to simulate processes and nuclear plant states during severe accidents in the containment...The code COCOSYS (Containment Code System) was developed by GRS (Gesellschaft fur Anlagen-und Reaktorsicherheit) in Germany to simulate processes and nuclear plant states during severe accidents in the containments of light water reactors. It contains several physical models, especially a module for aerosol behaviour. The goal of this work was to extend COCOSYS for applications in more general geometries mainly for complex public buildings. For the application in public buildings, models for air condition systems and different boundary conditions according to different environments were developed. The principal application of the extended code COCOSYS is in the area of emergency situations especially in the simulation for carbon monoxide and smoke dispersion. As first achievement realistic fire emergency scenarios in the Vienna General Hospital (AKH) could be simulated. The results of the simulation can be used for the development of fire emergency training.展开更多
Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy...Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP AGCM4.0), in simulating surface air temperature (SAT) during the twentieth century over China and the globe. The numerical experiment is con- ducted by driving the model with the observed sea surface temperature and sea ice. It is shown that IAP AGCM4.0 can simulate the warming trend of the global SAT, with the major wanning regions in the high latitudes of the Northern Hemisphere and the mid-latitudes of the South- ern Hemisphere. While the simulated trend over the whole globe is close to the observation, the model trader- estimates the observed trend over the continents. More- over, the model simulates the spatial distribution of SAT in China, with a bias of approximately -2℃ in eastern China, but with a more serious bias in western China. Compared with the global mean, however, the correlation coefficient between the simulation and observation in China is significantly lower, indicating that there is large uncertainty in simulating regional climate change.展开更多
This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with i...This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.展开更多
Computer simulation was used for predictive analysis of the effects of weather and soil type on crop yield in the U.S. crop insurance program. The Environmental Policy Integrated Climate (EPIC) model was modified to...Computer simulation was used for predictive analysis of the effects of weather and soil type on crop yield in the U.S. crop insurance program. The Environmental Policy Integrated Climate (EPIC) model was modified to include hail weather events, which completed the modifications necessary to simulate the four most frequent causes of crop yield loss (hail, excessive wet, excessive cold, and excessive dry) associated with soil type in Kansas, USA. At the region level, per hectare yields were simulated for corn, wheat, soybean, and sorghum. We concluded that it was possible to predict crop yields through computer simulation with greater than 93% accuracy. The hail damage model test indicated EPIC could predict hail-soil-induced yield losses reasonably well (R^2 〉 0.6). The investigation of soil type influence on dryland sorghum and wheat production indicated that Wymore silty clay loam soil and Kenorna silt loam produced the highest sorghum yields statistically; Kuma silt loam, Roxbury silt loam, Crete silty clay loam, and Woodson silt soils produced the second highest sorghum yields statistically; and Richfiled silt loam, Wells loam, and Canadian sandy loam produced the lowest sorghum yields. By contrast, wheat production showed less sensitivity to soil type variation. The less sensitive response of wheat yields to the soil type could be largely due to the unconsidered small-scale variability of soil features.展开更多
基金Project(41941018)supported by the National Natural Science Foundation of China for the Special Project FundingProject(22-JKCF-08)supported by the Study on in-situ Stress Database and 3D in-situ Stress Inversion Technology of Highway Tunnel in Shanxi Province,China+1 种基金Project(2022-JKKJ-6)supported by the Study on Disaster Mechanism and NPR Anchor Cable Prevention and Control of Coal Mining Caving Subsidence in Operating Tunnel in Mountainous Area,ChinaProject(BBJ2024032)supported by the Fundamental Research Funds for the Central Universities(PhD Top Innovative Talents Fund of CUMTB),China。
文摘A study was conducted to analyze the deformation mechanism of strongly weathered quartz schist in the Daliangshan Tunnel,located in the western Transverse Mountain area.A large deformation problem was experienced during the tunnel construction.To mitigate this problem,a support system was designed incorporating negative Poisson ratio(NPR)anchor cables with negative Poisson ratio effect.Physical model experiments,field experiments,and numerical simulation experiments were conducted to investigate the compensation mechanical behavior of NPR anchor cables.The large deformations of soft rocks in the Daliangshan Tunnel are caused by a high ground stress,a high degree of joint fracture development,and a high degree of surrounding rock fragmentation.A compensation mechanics support system combining long and short NPR anchor cables was suggested to provide sufficient counter-support force(approximately 350 kN)for the surrounding rock inside the tunnel.Comparing the NPR anchor cable support system with the original support system used in the Daliangshan tunnel showed that an NPR anchor cable support system,combining cables of 6.3 m and 10.3 m in length,effectively prevented convergence of surrounding rock deformation,and the integrated settlement convergence value remained below 300 mm.This study provides an effective scientific basis for resolving large deformation problems in deeply buried soft rocks in western transverse mountain areas.
基金sponsored by National Science and Technology Major Project(2011ZX05046-001)
文摘Large-scale 3D physical models of complex structures can be used to simulate hydrocarbon exploration areas. The high-fidelity simulation of actual structures poses challenges to model building and quality control. Such models can be used to collect wideazimuth, multi-azimuth, and full-azimuth seismic data that can be used to verify various 3D processing and interpretation methods. Faced with nonideal imaging problems owing to the extensive complex surface conditions and subsurface structures in the oil-rich foreland basins of western China, we designed and built the KS physical model based on the complex subsurface structure. This is the largest and most complex 3D physical model built to date. The physical modeling technology advancements mainly involve 1) the model design method, 2) the model casting flow, and 3) data acquisition. A 3D velocity model of the physical model was obtained for the first time, and the model building precision was quantitatively analyzed. The absolute error was less than 3 mm, which satisfies the experimental requirements. The 3D velocity model obtained from 3D measurements of the model layers is the basis for testing various imaging methods. Furthermore, the model is considered a standard in seismic physical modeling technology.
文摘An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical-mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid-fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.
基金sponsored by the National Natural Science Foundation of China (No.41074098)
文摘Traditionally, fluid substitutions are often conducted on log data for calculating reservoir elastic properties with different pore fluids. Their corresponding seismic responses are computed by seismic forward modeling for direct gas reservoir identification. The workflow provides us with the information about reservoir and seismic but just at the well. For real reservoirs, the reservoir parameters such as porosity, clay content, and thickness vary with location. So the information from traditional fluid substitution just at the well is limited. By assuming a rock physics model linking the elastic properties to porosity and mineralogy, we conducted seismic forward modeling and AVO attributes computation on a three-layer earth model with varying porosity, clay content, and formation thickness. Then we analyzed the relations between AVO attributes at wet reservoirs and those at the same but gas reservoirs. We arrived at their linear relations within the assumption framework used in the forward modeling. Their linear relations make it possible to directly conduct fluid substitution on seismic AVO attributes. Finally, we applied these linear relations for fluid substitution on seismic data and identified gas reservoirs by the cross-plot between the AVO attributes from seismic data and those from seismic data after direct fluid substitution.
基金Supported by the Natural Science Foundation of China (50375026, 50375028)
文摘For mining extra-steep-thick coal seam, the sublevel top coal caving is a high efficient method in practical engineering. However, major challenges associated with mining high-section top-coal-caving (HSTCC) are related to the resulting high ground stresses. Inevitability, using the high-section sublevel top coal caving for extra-steep-thick coal seam, the large scale of mined-out area appears. If the prefracture blasting and hydraulic fracture techniques are utilized, the top coal damage and cracks will develop, and the mining complexity will increase, such as seam inclination, continuity, mechanical characteristics of roof and susceptibility of top coal, etc. First, the field conditions of B1+2 seam were investigated at the +588 level of the Weihuliang Underground Mine of China. Subsequently, according to caving mechanism of strata response obtained from several special models including physical simulation tests and numerical simulation models, the prefracture process including blasting and injecting water were analyzed. Then, the prefracture blasting technique was successfully applied to the caving of 52 m-sublevel seam. Finally, the effects were verified by advanced detecting instruments, and the results show these methods and measurements are feasible and valid.
文摘This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
基金financial support provided by the Western US Mining Safety and Health Training&Translation Center by the National Institute for Occupational Safety and Health(NIOSH)
文摘The diesel particulate matter(DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump(LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase(gas) or as a secondary discrete phase(particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.
基金partially supported by a research grant from China Sport Administration (No. 2014B057)
文摘Purpose: The purpose of this study was to determine the effect of horizontal and vertical velocities at the landing of the last step of approach run on the performance and optimal phase ratio of the triple jump. Methods: Three-dimensional kinematic data of 13 elite male triple jumpers were obtained during a competition. Computer simulations were performed using a biomechanical model of the triple jump to determine the longest actual distance using the optimal phase ratio with altered horizontal and vertical velocities at the landing of the last step of approach run. Results: The actual distance obtained using the optimal phase ratio significantly increased as the horizontal velocity at the landing of the last step of approach run increased (p = 0.001) and the corresponding downward vertical velocity decreased (p = 0.001). Increasing horizontal velocity at the landing of the last step of approach run decreased optimal hop percentage and increased optimal jump percentage (p = 0.001), while decreasing corresponding downward vertical velocity increased optimal hop percentage and decreased optimal jump percentage (p = 0.001). Conclusion: The effects of the velocities at the landing of the last step of approach run on the optimal phase ratio were generally small and did not qualitatively alter optimal techniques.
基金supported by the China-UK-Swiss Adapting to Climate Change in China(ACCC)Project-Climate Sciencethe Chinese Academy of Science Project under Grant KZCX2-YW-Q11-04
文摘The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations.
文摘The first component of a building implemented in a virtual prototype concerning the management of a building is a lighting system. It was applied in a study case. The interactive application allows the examination of the physical model, visualizing, for each element modeled in three-dimensions (3D) and linked to a database, the corresponding technical information concerned with the use of the material, calculated for different points in time during their life. The control of a lamp stock, the constant updating of lifetime information and the planning of periodical local inspections are attended on the prototype. This is an important mean of cooperation between collaborators involved in the building management.
基金Supported by the National Natural Science Foundation of China (No. 29976038).
文摘In order to understand the behavior of ligninolytic enzyme production by white rot fungi Phanerochaete chrysosporium, study on time courses and a mathematical model for the production of lignin peroxidase (LiP) and manganese peroxidase (MnP) of the fungi was undertaken. Based on the Monod-Jacob operon model, the ligninolytic enzyme would be synthesized in the absence of a related repressor. The repressor is assumed to be active in the presence of ammonia nitrogen, and as combined as co-repressor, it causes the inhibition of enzyme synthesis. The model can explain the mechanism of extracellular ligninolytic enzyme production by white rot fungi. The results,as predicted by the model, correspond closely to those observed in experimental studies. In addition, some light is also shed on unmeasured variables, such as the concentrations of repressor and mRNA that are related to the enzyme synthesis.
基金the financial support from the National Natural Science Foundation of China(No.2117619)the Shaanxi Province Major Project of Innovation of Science and Technology(No.2008zkc03205,No.2011KTZB03-03-01)
文摘The aim of this paper was preliminary design of the process for low-temperature coal tar hydrocrackmg m supercritical gasoline based on Aspen Plus with the concept of energy self-sustainability. In order to ensure the correct- ness and accuracy of the simulation, we did the following tasks: selecting reasonable model compounds for low-tem- perature coal tar; describing the nature of products gasoline and diesel accurately; and confirming the proper property study method for each block by means of experience and trial. The purpose of energy self-sustainability could be pos- sibly achieved, on one hand, by using hot stream to preheat cold stream and achieving temperature control of streams, and on the other hand, by utilizing gas (byproduct of the coal tar hydrocracking) combustion reaction to provide energy. Results showed that the whole process could provide a positive net power of about 609 kW-h for processing the low- temperature coal tar with a flowrate of 2 268 kg/h. The total heat recovery amounted to 2 229 kW-h, among which 845 kW'h was obtained from the gas combustion reaction, and 1 116 kW'h was provided by the reactor's outlet stream, with the rest furnished by hot streams of the products gasoline, diesel and residue. In addition, the process flow sheet could achieve products separation well, and specifically the purity of product gasoline and diesel reached 97.2% and 100%, respectively.
基金Under the auspices of National High-Tech Research and Development Program of China (863 Program) (No. 2006AA10Z227)the "Eleventh Five-year Plan" of Jilin Province Educational Office (No. 2007[456])
文摘Over the past 20 years, significant progress has been made in virtual plant modeling corresponding to the rapid advances in information technology. Virtual plant research has broad applications in agronomy, forestry, ecol- ogy and remote sensing. As many biological processes are driven by light, it is the key for virtual plant to estimate the light absorbed by each organ. This paper presents the radiance equation suitable for calculating sun and sky light intercepted by plant organs based on the principles of the interaction between light and plant canopy firstly; analyzes the process principles of plant canopy primary lighting based on ray casting and projection secondly; describes the multiple scattering of plant lighting based on Monte Carlo ray tracing method and on the radiosity method thirdly; and confirms the research with 3D visualization based on Virtual Reality Modeling Language (VRML) finally. The research is the primary work of digital agriculture, and important for monitoring and estimating corn growth in Northeast China.
基金the National Natural Science Foundation of China (No. 29806006).
文摘Plasma was purified in an immobilized L-asparaginase column. The predicted results are in good agreement with experimental data. It is indicated that the mathematical model is suitable for the mass transfer and reaction of blood purification.
文摘The code COCOSYS (Containment Code System) was developed by GRS (Gesellschaft fur Anlagen-und Reaktorsicherheit) in Germany to simulate processes and nuclear plant states during severe accidents in the containments of light water reactors. It contains several physical models, especially a module for aerosol behaviour. The goal of this work was to extend COCOSYS for applications in more general geometries mainly for complex public buildings. For the application in public buildings, models for air condition systems and different boundary conditions according to different environments were developed. The principal application of the extended code COCOSYS is in the area of emergency situations especially in the simulation for carbon monoxide and smoke dispersion. As first achievement realistic fire emergency scenarios in the Vienna General Hospital (AKH) could be simulated. The results of the simulation can be used for the development of fire emergency training.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues of the Chinese Academy of Sciences (Grant No. XDA05110201)the Development and Validation of High Resolution Climate System Model of the National Basic Research Program of China (Grant No.2010CB951901)
文摘Based on time series and linear trend analysis, the authors evaluated the performance of the fourth gen- eration atmospheric general circulation model developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP AGCM4.0), in simulating surface air temperature (SAT) during the twentieth century over China and the globe. The numerical experiment is con- ducted by driving the model with the observed sea surface temperature and sea ice. It is shown that IAP AGCM4.0 can simulate the warming trend of the global SAT, with the major wanning regions in the high latitudes of the Northern Hemisphere and the mid-latitudes of the South- ern Hemisphere. While the simulated trend over the whole globe is close to the observation, the model trader- estimates the observed trend over the continents. More- over, the model simulates the spatial distribution of SAT in China, with a bias of approximately -2℃ in eastern China, but with a more serious bias in western China. Compared with the global mean, however, the correlation coefficient between the simulation and observation in China is significantly lower, indicating that there is large uncertainty in simulating regional climate change.
基金Supported by the Natural Science Foundation of Guangdong Province,China(8151064101000049)
文摘This study is focused on the kinetic characteristics of photocatalytic degradation of gaseous organic compounds on modified titanium dioxide/activated carbon composite photocatalyst(MTA).The MTA,which co-doping with iron(Fe) and nitrogen(N),was synthesized by a sol-gel method,and its photocatalytic performance was investigated under different reaction conditions.The experimental data obtained were tested by the zero,first and second order kinetic model,and the factors affecting the kinetic model were analyzed.It was clearly demonstrated that the experimental data of toluene and acetone on MTA fit quite well with second order kinetic model equation,but the experimental data of formaldehyde fits well with zero order kinetic model equation.
基金supported by the Risk Management Agency Strategic Data Acquisition and Analysis Division Research Fund of United States Department of Agriculture (No.53-3151-2-00017)
文摘Computer simulation was used for predictive analysis of the effects of weather and soil type on crop yield in the U.S. crop insurance program. The Environmental Policy Integrated Climate (EPIC) model was modified to include hail weather events, which completed the modifications necessary to simulate the four most frequent causes of crop yield loss (hail, excessive wet, excessive cold, and excessive dry) associated with soil type in Kansas, USA. At the region level, per hectare yields were simulated for corn, wheat, soybean, and sorghum. We concluded that it was possible to predict crop yields through computer simulation with greater than 93% accuracy. The hail damage model test indicated EPIC could predict hail-soil-induced yield losses reasonably well (R^2 〉 0.6). The investigation of soil type influence on dryland sorghum and wheat production indicated that Wymore silty clay loam soil and Kenorna silt loam produced the highest sorghum yields statistically; Kuma silt loam, Roxbury silt loam, Crete silty clay loam, and Woodson silt soils produced the second highest sorghum yields statistically; and Richfiled silt loam, Wells loam, and Canadian sandy loam produced the lowest sorghum yields. By contrast, wheat production showed less sensitivity to soil type variation. The less sensitive response of wheat yields to the soil type could be largely due to the unconsidered small-scale variability of soil features.