In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed,...As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed, direction and friction are introduced in this study to construct the asymmetric strengthening of the QuikSCAT wind field. Then by adopting a technology of four-dimensional data assimilation, an experiment that includes both the assimilation and forecasting phases is designed to simulate Typhoon Rananim numerically. The results show that with model constraints and adjustment, this technology can incorporate the QuikSCAT wind data to the entire column of the model atmosphere, improve greatly the simulating effects of the whole-column wind, pressure field and the track as well as the simulated typhoon intensity covered by the forecast phase, and work positively for the forecasting of landfall locations.展开更多
Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwellin...Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices;and forces for the reef model were measured by load cell.The results of flume experiments agree well with the numerical data.In addition,the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes,showing a more complicated flow structure than that of a stand-alone reef.Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef.The role of the reef in water flow is to reduce flow velocity and generate turbulence.展开更多
New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends ...New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.展开更多
Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy...Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.展开更多
Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Bot...Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Both parties jointly construct a highly nonlinear SPN core algorithm. The paper the connotation of polymorphic cipher theory, making use of the method of self-compiler based expansion factor to collect random parameter sets held by each of the parties containing its own information 5-tuple private keys array Kpa[5] and Kpb[5].The more efficient polymorphism virtual S-box is constructed. The method of secret split for the public key cryptography features can be implemented by symmetry cipher system. The research results will provide a theoretical basis to solve the key exchange problems for short- term communications partner based on symmetric cryptography.展开更多
Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A s...Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.展开更多
In this paper, we revisit foundations of the applications of physical measurement and Lindenmayer system to the modeling of plants. The measurement is proposed to a formal procedure and measuring the mass of leaves on...In this paper, we revisit foundations of the applications of physical measurement and Lindenmayer system to the modeling of plants. The measurement is proposed to a formal procedure and measuring the mass of leaves on a tree, tailored to branching plant structures with Simpson' s rule and Monte Carlo Methods. L-system is possible to visualize mathematical models of biological structures and processes. The formalism is illustrated using theoretical branching systems, and applied to analyze total leaves number as well as total weight of them.展开更多
This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classificati...This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.展开更多
In-situ measurements in Xiangshan Bay, the East China Sea, show that the duration of the rising tide is shorter than that of the falling tide around the bay mouth, while it becomes much longer in the inner bay. A fini...In-situ measurements in Xiangshan Bay, the East China Sea, show that the duration of the rising tide is shorter than that of the falling tide around the bay mouth, while it becomes much longer in the inner bay. A finite volume coastal ocean model(FVCOM) with an unstructured mesh was applied to simulate the asymmetric tidal field of Xiangshan Bay. The model reproduced the observed tidal elevations and currents successfully. Several numerical experiments were conducted to clarify the roles of primary mechanisms underlying the asymmetric tidal field. According to the model results, the time-varying channel depth and nonlinear advection prefer shorter duration of the rising tide in Xiangshan Bay, while the time-varying bay width favors longer duration of the rising tide. The overtides generated by these two opposite types of nonlinear mechanisms are out of phase, resulting in smaller M4 amplitude than the sumfold of each individual contribution. Although the bottom friction as a nonlinear mechanism contributes little to the generation of overtide M4, it is regarded as a mechanism that could cause a shorter duration of the rising tide, for it can slow down the M2 phase speed much more than it slows down the M4 phase speed. The time-varying depth, nonlinear advection and bottom friction are dominating factors around the bay mouth, while the time-varying width dominates in the inner bay, causing the tidal elevation asymmetry to be inverted along the bay.展开更多
Using reanalysis data as a benchmark, the authors evaluate the performance of an Atmospheric General Circulation Model (AGCM) named GAMIL (Grid-point Atmospheric Model of LASG/IAP). GAMIL is used to simulate the t...Using reanalysis data as a benchmark, the authors evaluate the performance of an Atmospheric General Circulation Model (AGCM) named GAMIL (Grid-point Atmospheric Model of LASG/IAP). GAMIL is used to simulate the tropospheric temperature anoma- lies associated with the El Nifio-Southern Oscillation (ENSO) in boreal winters for the period 1980-99. The results show that the symmetrical components of tem- perature anomalies simulated by GAMIL closely resem- ble those in the reanalysis data in spatial patterns, espe- cially in the Northern Hemisphere. The limitation of the model is that the simulated cold anomaly over South Asia is located to the east of the reanalysis. The observed tem- perature anomalies in the South Pacific and the high lati- tudes of the Southern Hemisphere are not evident in the simulation. The maximum value is 0.8 K smaller and the minimum value is -0.4 K smaller than the reanalysis. The difference between the simulation and the reanalysis is more evident in the regional features of the asymmetrical components of the temperature anomalies. Our results demonstrate that the previously discovered weak response of the GAMIL model to specified sea surface temperature forcing is dominated by the symmetric (asymmetric) component in the tropics (extra-tropics).展开更多
We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these...We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Oaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.展开更多
Empirical studies have shown that a large number of financial asset returns exhibit fat tails (leptokurtosis) and are often characterized by volatility clustering and asymmetry. This paper considers the ability of t...Empirical studies have shown that a large number of financial asset returns exhibit fat tails (leptokurtosis) and are often characterized by volatility clustering and asymmetry. This paper considers the ability of the GARCH-Type (Generalized Autoregressive Conditional Heteroskedasticity) models to capture the stylized features of volatility in national stock market returns for three countries (Portugal, Spain and Greece). The results of this paper suggest that in the presence of asymmetric responses to innovations in the market, the ARMA (1,1)-GJRGARCH(1,1) skewed Student-t model which accommodates both the skewness and the kurtosis of financial time series is preferred.展开更多
Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The t...Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.展开更多
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金National Key Fundamental Research and Development Plan of China (2004CB418301)Natural Science Foundation of China (40830958)
文摘As an approach to the technological problem that the wind data of QuikSCAT scatterometer cannot accurately describe the zone of typhoon-level strong wind speed, some objective factors such as the typhoon moving speed, direction and friction are introduced in this study to construct the asymmetric strengthening of the QuikSCAT wind field. Then by adopting a technology of four-dimensional data assimilation, an experiment that includes both the assimilation and forecasting phases is designed to simulate Typhoon Rananim numerically. The results show that with model constraints and adjustment, this technology can incorporate the QuikSCAT wind data to the entire column of the model atmosphere, improve greatly the simulating effects of the whole-column wind, pressure field and the track as well as the simulated typhoon intensity covered by the forecast phase, and work positively for the forecasting of landfall locations.
基金Supported by the National Natural Science Foundation of China(Nos.31072246,31272703)
文摘Flume experiments and numerical simulation were conducted to characterize the hydrodynamics of a trapezoid artificial reef.Measurements in particle image velocimetry were conducted to observe the formation of upwelling and vortices;and forces for the reef model were measured by load cell.The results of flume experiments agree well with the numerical data.In addition,the flow structure around a reef combining trapezoidal and cubic blocks was simulated numerically under two deployment schemes,showing a more complicated flow structure than that of a stand-alone reef.Relationship between drag coefficient and Reynolds number suggest that the degree of turbulence can be assessed from the value of drag coefficient downstream from the reef.The role of the reef in water flow is to reduce flow velocity and generate turbulence.
基金supported by the National Natural Science Foundation of China under Grant No. 10671156the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘New classes of exact solutions of the quasi-linear diffusion-reaction equations are obtained by seeking for the high-order conditional Lie-Baeklund symmetries of the considered equations. The method used here extends the approaches of derivative-dependent functional separation of variables and the invariant subspace. Behavior to some solutions such as blow-up and quenching is also described.
基金This work was supported by the National Natural Science Foundation of China (No.20476004 and No.2087005) and the National Basic Research Program of China (No.2004CB719505). Computational resources were supported by the "Chemical Grid Project" of Beijing University of Chemical Technology.
文摘Molecular dynamics simulations with embedded atom method potential were carried out for A1 nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specific heat capacity were calculated to estimate the melting temperatures. The melting point is 540+10 K for the icosahedral structure, 500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure. With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.
基金the National Natural Science Foundation of China under Grant No.61272038 and No.61340059,Zhengzhou Academician Workstation Funded Projects,the Education Department of Henan Province Science and Technology Research Project,Key Project of Science and Technology Research,the Doctor Fund of Zhengzhou University of Light Industry
文摘Based on the theory of polymorphic virtual S-box, the paper presents a symmetric key exchange protocol to solve the problem of session keys delete shared in the computational complexity temporary trading scenario. Both parties jointly construct a highly nonlinear SPN core algorithm. The paper the connotation of polymorphic cipher theory, making use of the method of self-compiler based expansion factor to collect random parameter sets held by each of the parties containing its own information 5-tuple private keys array Kpa[5] and Kpb[5].The more efficient polymorphism virtual S-box is constructed. The method of secret split for the public key cryptography features can be implemented by symmetry cipher system. The research results will provide a theoretical basis to solve the key exchange problems for short- term communications partner based on symmetric cryptography.
基金Project(2011FZ050) supported by Applied Basic Research Program of Yunnan Provincial Science and Technology Department,ChinaProject(2011J084) supported by Master Program of Yunnan Province Education Department,China
文摘Local inhomogeneity in totally asymmetric simple exclusion processes (TASEPs) with different hopping rates was studied. Many biological and chemical phenomena can be described by these non-equilibrium processes. A simple approximate theory and extensive Monte Carlo computer simulations were used to calculate the steady-state phase diagrams and bulk densities. It is found that the phase diagram for local inhomogeneity in TASEP with different hopping rates p is qualitatively similar to homogeneous models. Interestingly, there is a saturation point pair (a*, fl*) for the system, which is decided by parameters p and q. There are three stationary phases in the system, when parameter p is fixed (i.e., p=0.8), with the increase of the parameter q, the region of LD/LD and HD/HD phase increases and the HD/LD is the only phase which the region shrinks. The analytical results are in good agreement with simulations.
文摘In this paper, we revisit foundations of the applications of physical measurement and Lindenmayer system to the modeling of plants. The measurement is proposed to a formal procedure and measuring the mass of leaves on a tree, tailored to branching plant structures with Simpson' s rule and Monte Carlo Methods. L-system is possible to visualize mathematical models of biological structures and processes. The formalism is illustrated using theoretical branching systems, and applied to analyze total leaves number as well as total weight of them.
基金Supported by the National Natural Science Foundation of China under Grant No.10671156the Natural Science Foundation of Shaanxi Province of China under Grant No.SJ08A05
文摘This paper is devoted to studying symmetry reduction of Cauchy problems for the fourth-order quasi-linear parabolic equations that admit certain generalized conditional symmetries (GCSs). Complete group classification results are presented, and some examples are given to show the main reduction procedure.
基金sponsored by the National Natural Science Foundation of China (41106006)the National Key Technology R&D Program of China (2011BAC03 B02)
文摘In-situ measurements in Xiangshan Bay, the East China Sea, show that the duration of the rising tide is shorter than that of the falling tide around the bay mouth, while it becomes much longer in the inner bay. A finite volume coastal ocean model(FVCOM) with an unstructured mesh was applied to simulate the asymmetric tidal field of Xiangshan Bay. The model reproduced the observed tidal elevations and currents successfully. Several numerical experiments were conducted to clarify the roles of primary mechanisms underlying the asymmetric tidal field. According to the model results, the time-varying channel depth and nonlinear advection prefer shorter duration of the rising tide in Xiangshan Bay, while the time-varying bay width favors longer duration of the rising tide. The overtides generated by these two opposite types of nonlinear mechanisms are out of phase, resulting in smaller M4 amplitude than the sumfold of each individual contribution. Although the bottom friction as a nonlinear mechanism contributes little to the generation of overtide M4, it is regarded as a mechanism that could cause a shorter duration of the rising tide, for it can slow down the M2 phase speed much more than it slows down the M4 phase speed. The time-varying depth, nonlinear advection and bottom friction are dominating factors around the bay mouth, while the time-varying width dominates in the inner bay, causing the tidal elevation asymmetry to be inverted along the bay.
文摘Using reanalysis data as a benchmark, the authors evaluate the performance of an Atmospheric General Circulation Model (AGCM) named GAMIL (Grid-point Atmospheric Model of LASG/IAP). GAMIL is used to simulate the tropospheric temperature anoma- lies associated with the El Nifio-Southern Oscillation (ENSO) in boreal winters for the period 1980-99. The results show that the symmetrical components of tem- perature anomalies simulated by GAMIL closely resem- ble those in the reanalysis data in spatial patterns, espe- cially in the Northern Hemisphere. The limitation of the model is that the simulated cold anomaly over South Asia is located to the east of the reanalysis. The observed tem- perature anomalies in the South Pacific and the high lati- tudes of the Southern Hemisphere are not evident in the simulation. The maximum value is 0.8 K smaller and the minimum value is -0.4 K smaller than the reanalysis. The difference between the simulation and the reanalysis is more evident in the regional features of the asymmetrical components of the temperature anomalies. Our results demonstrate that the previously discovered weak response of the GAMIL model to specified sea surface temperature forcing is dominated by the symmetric (asymmetric) component in the tropics (extra-tropics).
基金supported by National Natural Science Foundation of China under Grant No.2006CB921605the Science Research Foundation of Shunde College
文摘We study the propagation of spatial solitons in nematic liquid crystals, using the self-similar method. Analytical solutions in the form of self-similar solitons are obtained exactly. We confirm the stability of these solutions by direct numerical simulation, and find that the stable spatial solitons can exist in various forms, such as Oaussian solitons, radially symmetric solitons, multipole solitons, and soliton vortices.
文摘Empirical studies have shown that a large number of financial asset returns exhibit fat tails (leptokurtosis) and are often characterized by volatility clustering and asymmetry. This paper considers the ability of the GARCH-Type (Generalized Autoregressive Conditional Heteroskedasticity) models to capture the stylized features of volatility in national stock market returns for three countries (Portugal, Spain and Greece). The results of this paper suggest that in the presence of asymmetric responses to innovations in the market, the ARMA (1,1)-GJRGARCH(1,1) skewed Student-t model which accommodates both the skewness and the kurtosis of financial time series is preferred.
基金supported by the National Basic Research Program of China(Grant No.2014CB046201) the National Natural Science Foundation of China(Grant Nos.51766009,51566011,51465033,and 51479114)+3 种基金 the Thousand Talents Program(Grant No.NSFC-RCUK_EPSRC) the Platform Construction of Ocean Energy Comprehensive Supporting Service(2014)(Grant No.GHME2014ZC01) the High-tech Ship Research Projects Sponsored by MIITC Floating Support Platform Project(Grant No.201622) State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University
文摘Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.