Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformatio...Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.展开更多
The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method co...The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method coupling the Laasraoui-Jonas model (LJ model). The reliability of simulation depended on the accuracy of the hardening parameter, the recovery parameter and the strain rate sensitivity in the LJ model. The hardening parameter was calculated in terms of the LJ model and the Kocks-Mecking model (KM model), and then the recovery parameter and the strain rate sensitivity were obtained by using the equation of steady state flow stress for DRX. Good agreements between the simulations and the experimental observations were achieved.展开更多
We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks....We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.展开更多
A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The...A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.展开更多
The paper deals with a new species of megaalgal fossil-Enteromophites intestinalis sp. nov. found in Chenejiang Biota in the early Cambrian. A morphological comparison of the living Enteromorpha and fossil Enteromophi...The paper deals with a new species of megaalgal fossil-Enteromophites intestinalis sp. nov. found in Chenejiang Biota in the early Cambrian. A morphological comparison of the living Enteromorpha and fossil Enteromophites indicates that there probably is a close relationship between these two genera. Based on a study on the surroundings of living Enteromorpha, Enteromophites intestinalis sp. nov. might have lived in the environment of sea or salt water.展开更多
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi...The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.展开更多
In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is disc...In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is discussed with corresponding formula deduction, and detailed descriptions and applications of VRS corrections and virtual observations generation algorithm are given.展开更多
In this study,the effect of varied loading ratio(mass of the explosive/mass of flyer plate)on the nature of interface,temperature and pressure developed in aluminum-steel explosive cladding is presented.Increase in th...In this study,the effect of varied loading ratio(mass of the explosive/mass of flyer plate)on the nature of interface,temperature and pressure developed in aluminum-steel explosive cladding is presented.Increase in the loading ratio,R,enhances the pressure developed,kinetic energy utilization and deformation work performed.Interfacial microstructures exhibit the formation of molten layer at few spots,owing to the increase in temperature beyond the melting point of parent alloy.The increase in temperature and the quantum of pressure developed were determined by numerical simulation performed in Ansys AUTODYN by employing smoothed particle hydrodynamics(SPH)method.The positioning of the experimental conditions on the weldability window is presented as well.展开更多
In this research, one-dimensional stratiform a novel dual-model system, cold cloud model (1DSC) coupled to Weather Research and Forecast (WRF) model (WRF-1DSC for short), was employed to investigate the effects ...In this research, one-dimensional stratiform a novel dual-model system, cold cloud model (1DSC) coupled to Weather Research and Forecast (WRF) model (WRF-1DSC for short), was employed to investigate the effects of cloud seeding by silver iodide (AgI) on rain enhancement. Driven by changing environmental conditions extracted from the WRF model, WRF-1DSC could be used to assess the cloud seeding effects quantitatively. The employment of WRF- 1DSC, in place of a one-dimen- sional two-moment cloud seeding model applied to a three-dimensional mesoscale cloud-resolving model, was found to result in massive reduction of computational resources. Numerical experiments with WRF-1DSC were conducted for a real stratiform precipitation event ob- served on 4-5 July 2004, in Northeast China. A good agreement between the observed and modeled cloud system ensured the ability of WRF-1DSC to simulate the observed precipitation process efficiently. Sensitivity tests were performed with different seeding times, locations, and amounts. Experimental results showed that the optimum seeding effect (defined as the percentage of rain enhancement or rain enhancement rate) could be achieved through proper seeding at locations of maximum cloud water content when the updraft was strong. The optimum seeding effect was found to increase by 5.61% when the cloud was seeded at 5.5 km above ground level around 2300 UTC 4 July 2004, with the maximum AgI mixing ratio (As) equaling 15 ng kg-1. On the other hand, for an overseeded cloud, a significant reduction occurred in the accumulated precipitation (-12.42%) as Xs reached 100 ng kg^-1. This study demonstrates the potential of WRF- 1DSC in determining the optimal AgI seeding strategy in practical operations of precipitation enhancement.展开更多
The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) o...The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.展开更多
The value of application of three-dimensional visualization and animation technique in dynamic simulation of geographical landscape formation is analyzed and, in particular, how to simulate the formation and evolvemen...The value of application of three-dimensional visualization and animation technique in dynamic simulation of geographical landscape formation is analyzed and, in particular, how to simulate the formation and evolvement of geographical landscape in temporal dimension is discussed thoroughly. Based on various modeling tools in 3DS MAX and original DEM data of the study area acquired from topographic map, real three-dimensional terrain model is generated by using the method of three-dimensional mesh approximation through DEM interpolating and surface modeling, which leads to the realization of the dynamic visualization and simulation of volcanic landscape, formation and evolvement. Furthermore, the dynamic three-dimensional visual virtual scenery of the formation and evolvement of the volcano in the Changbai Mountains of Jilin, China, is constructed. The applicability, potential, and corresponding technique of using 3DS MAX to dynamically simulate the formation of geographical landscape are expatiated.展开更多
An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE pot...An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.展开更多
The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete elem...The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.展开更多
Larch caterpillar (Dendrolimus superans) is very common in the Da Hinggan Mountains, Northeast China, affecting fire regime and forest ecosystem change at large spatio-temporal scales. In this study, we used a spatial...Larch caterpillar (Dendrolimus superans) is very common in the Da Hinggan Mountains, Northeast China, affecting fire regime and forest ecosystem change at large spatio-temporal scales. In this study, we used a spatially explicit landscape model, LANDIS, to simulate the changes of fire regime and forest landscape under four larch caterpillar disturbance intensity levels scenarios in Huzhong forest area, northern of Da Hinggan Mountains. The results indicate that larch caterpillar disturbances would decrease fine fuel load and increase coarse fuel load in the 300 simulation years. Larch caterpillar disturbances would decrease fire frequency in the first 200 years, and the disturbances also decrease fire intensity and fire risk in the early and late stage of simulation. Larch caterpillar disturbances would decrease the area percent of larch cohorts and increase the proportion of white birch, and increase the degree of aggregation of white birch as a result of its strong seed dispersal and colonization ability. Disturbances would also decrease the mature and over-mature larch cohorts and increase all cohorts of white birch, especially the mature and over-mature cohorts. Larch caterpillar disturbances will decrease the stability of forest landscape, therefore,some measures preventing in- sect outbreak and ensuring the sustainable management of forest ecosystem should been taken in the study area.展开更多
An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the ...An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures.展开更多
基金Project (u0837601) supported by the New Joint Fund of National Natural Science Foundation of ChinaProject (50874054) supported by the National Natural Science Foundation of China
文摘Based on the research on the solidification of twin-roll continuous casting aluminum thin strip, the analytical model of heterogeneous nucleation, the growth kinetics of tip (KGT) and columnar dendrite transformation to equiaxed dendrite (CET) of twin-roll continuous casting aluminum thin strip solidification was established by means of the principle of metal solidification and modem computer emulational technology. Meantime, based on the cellular automaton, the emulational model of twin-roll continuous casting aluminum thin strip, solidification was established. The foundation for the emulational simulation of twin-roll casting thin strip solidification structure was laid. Meanwhile, the mathematical simulation feasibility was confirmed by using the solidification process of twin-roll continuous casting aluminum thin strip.
基金Project(51075132)supported by the National Natural Science Foundation of ChinaProject(2010DFB70180)supported by the Program of International Science&Technology CooperationProject(2011BAG03B02)supported by the National Key Technology R&D Program during the 12th Five-Year Plan Period of China
文摘The dynamic recrystallization (DRX) process of AZ31 magnesium alloy including microstructure and dislocation density evolution during hot compression was simulated by adopting the cellular automaton (CA) method coupling the Laasraoui-Jonas model (LJ model). The reliability of simulation depended on the accuracy of the hardening parameter, the recovery parameter and the strain rate sensitivity in the LJ model. The hardening parameter was calculated in terms of the LJ model and the Kocks-Mecking model (KM model), and then the recovery parameter and the strain rate sensitivity were obtained by using the equation of steady state flow stress for DRX. Good agreements between the simulations and the experimental observations were achieved.
文摘We built a three-dimensional irregular network model which can adequately describe reservoir rock pore-throat structures. We carried out numerical simulations to study the NMR T2 distribution of water-saturated rocks. The results indicate that there is a good correlation between T2 distribution and the pore radius frequency histogram. The total T2 distribution can be partitioned into pore body and pore throat parts. The effect of parameters including throat radius, pore-throat ratio, and coordination number of the micro- pore structure on the T2 distribution can be evaluated individually. The result indicates that: 1 ) with the increase of the pore throat radius, the T2 distribution moves toward longer relaxation times and its peak intensity increases; 2) with the increase of the pore-throat ratio, the T2 distribution moves towards longer T2 with the peak intensity increasing and the overlap between pore body T2 and pore throat T2 decreasing; 3) With the increase of connectivity, the short T2 component increases and peak signal intensity decreases slightly.
基金Projects(51075335,10902086,50875217) supported by the National Natural Science Foundation of ChinaProject(JC201005) supported by the Northwestern Polytechnical University Foundation for Fundamental Research,ChinaProject(CX201007) supported by the Doctorate Foundation of Northwestern Polytechnical University,China
文摘A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V.
文摘The paper deals with a new species of megaalgal fossil-Enteromophites intestinalis sp. nov. found in Chenejiang Biota in the early Cambrian. A morphological comparison of the living Enteromorpha and fossil Enteromophites indicates that there probably is a close relationship between these two genera. Based on a study on the surroundings of living Enteromorpha, Enteromophites intestinalis sp. nov. might have lived in the environment of sea or salt water.
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (20070731001) supported by Research Fund for the Doctoral Program of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province,China
文摘The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.
基金Funded by the National 973 Program of China (No. 2006CB701301)the Basic Research of Geomatics and Geodesy of the Key Laboratory of Geo-space Environment and Geodesy, Ministry of Education, China (No. 03-04-10)the Project of University Education and Research of Hubei Province(No.20053039).
文摘In the past few years, network RTK positioning technology, especially the VRS technology, has been widely used in some parts of China and in many countries around the world. The principle of the VRS technology is discussed with corresponding formula deduction, and detailed descriptions and applications of VRS corrections and virtual observations generation algorithm are given.
文摘In this study,the effect of varied loading ratio(mass of the explosive/mass of flyer plate)on the nature of interface,temperature and pressure developed in aluminum-steel explosive cladding is presented.Increase in the loading ratio,R,enhances the pressure developed,kinetic energy utilization and deformation work performed.Interfacial microstructures exhibit the formation of molten layer at few spots,owing to the increase in temperature beyond the melting point of parent alloy.The increase in temperature and the quantum of pressure developed were determined by numerical simulation performed in Ansys AUTODYN by employing smoothed particle hydrodynamics(SPH)method.The positioning of the experimental conditions on the weldability window is presented as well.
基金supported by the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-EW-203)the National Basic Research Program of China (Grant No.2013CB430105)the National Department Public Benefit Research Foundation (Grant No.GYHY201006031)
文摘In this research, one-dimensional stratiform a novel dual-model system, cold cloud model (1DSC) coupled to Weather Research and Forecast (WRF) model (WRF-1DSC for short), was employed to investigate the effects of cloud seeding by silver iodide (AgI) on rain enhancement. Driven by changing environmental conditions extracted from the WRF model, WRF-1DSC could be used to assess the cloud seeding effects quantitatively. The employment of WRF- 1DSC, in place of a one-dimen- sional two-moment cloud seeding model applied to a three-dimensional mesoscale cloud-resolving model, was found to result in massive reduction of computational resources. Numerical experiments with WRF-1DSC were conducted for a real stratiform precipitation event ob- served on 4-5 July 2004, in Northeast China. A good agreement between the observed and modeled cloud system ensured the ability of WRF-1DSC to simulate the observed precipitation process efficiently. Sensitivity tests were performed with different seeding times, locations, and amounts. Experimental results showed that the optimum seeding effect (defined as the percentage of rain enhancement or rain enhancement rate) could be achieved through proper seeding at locations of maximum cloud water content when the updraft was strong. The optimum seeding effect was found to increase by 5.61% when the cloud was seeded at 5.5 km above ground level around 2300 UTC 4 July 2004, with the maximum AgI mixing ratio (As) equaling 15 ng kg-1. On the other hand, for an overseeded cloud, a significant reduction occurred in the accumulated precipitation (-12.42%) as Xs reached 100 ng kg^-1. This study demonstrates the potential of WRF- 1DSC in determining the optimal AgI seeding strategy in practical operations of precipitation enhancement.
基金Supported by the National Natural Science Foundation of China (20976044 20736002)
文摘The effects of blend composition and micro-phase structure on the mechanical behavior of A/B polymer blend film are studied by coupling the Monte Carlo(MC) simulation of morphology with the lattice spring model(LSM) of micro mechanics of materials.The MC method with bond length fluctuation and cavity diffusion algorithm on cubic lattice is adopted to simulate the micro-phase structure of A/B polymer blend.The information of morphology and structure is then inputted to the LSM composed of a three-dimensional network of springs to obtain the mechanical properties of polymer blend film.Simulated results show that the mechanical response is mainly affected by the density and the composition of polymer blend film through the morphology transition.When a force is applied on the outer boundary of polymer blend film,the vicinity of the inner cavities experiences higher stresses and strains responsible for the onset of crack propagation and the premature failure of the entire system.
文摘The value of application of three-dimensional visualization and animation technique in dynamic simulation of geographical landscape formation is analyzed and, in particular, how to simulate the formation and evolvement of geographical landscape in temporal dimension is discussed thoroughly. Based on various modeling tools in 3DS MAX and original DEM data of the study area acquired from topographic map, real three-dimensional terrain model is generated by using the method of three-dimensional mesh approximation through DEM interpolating and surface modeling, which leads to the realization of the dynamic visualization and simulation of volcanic landscape, formation and evolvement. Furthermore, the dynamic three-dimensional visual virtual scenery of the formation and evolvement of the volcano in the Changbai Mountains of Jilin, China, is constructed. The applicability, potential, and corresponding technique of using 3DS MAX to dynamically simulate the formation of geographical landscape are expatiated.
基金We thank Professor Dr. Markus Deserno (Department of Physics, Carnegie Mellon University), Jemal Guven (Institute of Nuclear Science, Universidad Nacional Autonoma de Mexico), and Zhan-chun Tu (Department of Physics, Beijing Normal University) for their valuable advice. This work is supported by the National Natural Science Foundation of China (No.20974078, No.21274107, and No.91127046). The computation and simulation are partly carried out in High Performance Computing Center of Tianjin University.
文摘An implicit solvent coarse-grained (CG) lipid model using three beads to reflect the basically molecular structure of two-tailed lipid is developed. In this model, the nonbonded interaction employs a variant MIE potential and the bonded interaction utilizes a Harmonic potential form. The CG force field parameters are achieved by matching the structural and mechan-ical properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. The model successfully reproduces the formation of lipid bilayer from a random initial state and the spontaneous vesiculation of lipid bilayer from a disk-like structure. After that, the model is used to sys-tematically study the vesiculation processes of spherical and cylindrical lipid droplets. The results show that the present CG model can effectively simulate the formation and evolution of mesoscale complex vesicles.
基金Project(51378006) supported by National Natural Science Foundation of ChinaProject(141076) supported by Huoyingdong Foundation of the Ministry of Education of China+1 种基金Project(2242015R30027) supported by Excellent Young Teacher Program of Southeast University,ChinaProject(BK20140109) supported by the Natural Science Foundation of Jiangsu Province,China
文摘The objective of this work is to model the microstructure of asphalt mixture and build virtual test for asphalt mixture by using Particle Flow Code in three dimensions(PFC^(3D))based on three-dimensional discrete element method.A randomly generating algorithm was proposed to capture the three-dimensional irregular shape of coarse aggregate.And then,modeling algorithm and method for graded aggregates were built.Based on the combination of modeling of coarse aggregates,asphalt mastic and air voids,three-dimensional virtual sample of asphalt mixture was modeled by using PFC^(3D).Virtual tests for penetration test of aggregate and uniaxial creep test of asphalt mixture were built and conducted by using PFC^(3D).By comparison of the testing results between virtual tests and actual laboratory tests,the validity of the microstructure modeling and virtual test built in this study was verified.Additionally,compared with laboratory test,the virtual test is easier to conduct and has less variability.It is proved that microstructure modeling and virtual test based on three-dimensional discrete element method is a promising way to conduct research of asphalt mixture.
基金Under the auspices of National Natural Science Foundation of China(No.31070422,40871245)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050201)
文摘Larch caterpillar (Dendrolimus superans) is very common in the Da Hinggan Mountains, Northeast China, affecting fire regime and forest ecosystem change at large spatio-temporal scales. In this study, we used a spatially explicit landscape model, LANDIS, to simulate the changes of fire regime and forest landscape under four larch caterpillar disturbance intensity levels scenarios in Huzhong forest area, northern of Da Hinggan Mountains. The results indicate that larch caterpillar disturbances would decrease fine fuel load and increase coarse fuel load in the 300 simulation years. Larch caterpillar disturbances would decrease fire frequency in the first 200 years, and the disturbances also decrease fire intensity and fire risk in the early and late stage of simulation. Larch caterpillar disturbances would decrease the area percent of larch cohorts and increase the proportion of white birch, and increase the degree of aggregation of white birch as a result of its strong seed dispersal and colonization ability. Disturbances would also decrease the mature and over-mature larch cohorts and increase all cohorts of white birch, especially the mature and over-mature cohorts. Larch caterpillar disturbances will decrease the stability of forest landscape, therefore,some measures preventing in- sect outbreak and ensuring the sustainable management of forest ecosystem should been taken in the study area.
基金Project(51420105005)supported by the Major International(Regional)Joint Research Program of National Natural Science Foundation of ChinaProject(2016YFF0101301)supported by the National Key Research and Development Program of China
文摘An extended continuum mixture model for macrosegregation is applied to predicting Cu and Mg segregation in large-size ingot of 2024 aluminum alloy during direct chill casting(DC). A microsegregation model using the approximate phase diagram data was coupled with macroscopic transport equations for macrosegregation profiles. Then, the impacts of transport mechanisms on the formation of macrosegregation were discussed. It is found that copper and magnesium have a similar segregation configuration from the billet center to surface. Negative segregation is observed in the centerline and subsurface, whereas positive segregation is obtained in the surface and somewhat underestimated positive segregation in the middle radius. Further, the discrepancy between the predicted and experimental results was discussed in detail. The results show that the magnesium to some extent alleviates the copper segregation in ternary alloy, compared with that in binary alloy. The predicted results show good agreement with measured experimental data obtained from literatures.