Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency...Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency. In MIMO system, spatial modulation(SM) has recently emerged as a new transmission method. In this paper, in order to improve the security in SM-MIMO, a physical layer encryption approach named chaotic antenna-index three-dimensional modulation and constellation points rotated(CATMCPR) encryption scheme is proposed, which utilizes the chaotic theory and spatial modulation techniques. The conventional physical-layer encryption in SM-MIMO suffers from spectral efficiency(SE) performance degradation and usually needs a preshared key, prior channel state information(CSI) or excess jamming power. By contrast, we show that the CATMCPR scheme can not only achieve securely communication but also improve above drawbacks. We evaluate the performances of the proposed scheme by an analysis and computer simulations.展开更多
In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse op...In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichlet- to-Neumann (DtN) map, is improved to solve the equation. NumericM examples show that our treatment is more efficient.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 61502518,61372098 and 61702536
文摘Massive multiple input and multiple output(MIMO) is a key technology of the fifth generation(5 G) wireless communication systems, which brings various advantages, such as high spectral efficiency and energy efficiency. In MIMO system, spatial modulation(SM) has recently emerged as a new transmission method. In this paper, in order to improve the security in SM-MIMO, a physical layer encryption approach named chaotic antenna-index three-dimensional modulation and constellation points rotated(CATMCPR) encryption scheme is proposed, which utilizes the chaotic theory and spatial modulation techniques. The conventional physical-layer encryption in SM-MIMO suffers from spectral efficiency(SE) performance degradation and usually needs a preshared key, prior channel state information(CSI) or excess jamming power. By contrast, we show that the CATMCPR scheme can not only achieve securely communication but also improve above drawbacks. We evaluate the performances of the proposed scheme by an analysis and computer simulations.
基金supported by the National Natural Science Foundation of China(No.11371319)the Zhejiang Provincial Natural Science Foundation of China(No.LY13A010002)
文摘In this paper, the optical wave propagation in lossy waveguides is described by the Helmholtz equation with the complex refractive-index, and the Chebyshev pseudospectral method is used to discretize the transverse operator of the equation. Meanwhile, an operator marching method, a one-way re-formulation based on the Dirichlet- to-Neumann (DtN) map, is improved to solve the equation. NumericM examples show that our treatment is more efficient.