Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale d...Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.展开更多
Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height ...Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.展开更多
Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. C...Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.展开更多
The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by us...The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.展开更多
Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By compari...Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By comparing the simulated and experimental results, inner flow features were revealed to improve the abrasion characteristic of the solid-liquid two-phase centrifugal pump. The influence of the solid phase on centrifugal pump abrasive performance is small when the particle volume fraction is less than 2.5%. The aggregation degree of the solid particles is enhanced as the particle diameter increases from 0.1 to 1 mm; however, the mixture density on the pressure side is reduced when the particle diameter increases to 1 mm for the impact of inertia. The wear on the hub is most severe for the shear stress on this position; it is also the largest. The wear characteristic is affected greatly by the parameters of the solid phase. The wear chracteristic can be optimized by decreasing the blade outlet angle. In the modified design, the blade angle is different, whereas the other geometric dimensions remain the same. The improved pump is simulated to contrast with the original pump. The results show that the values of mixture density and shear stress both decrease. The wear condition of the blade is improved to a certain extent.展开更多
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simula- tions and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The pa...Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simula- tions and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be reached by specifying a higher frictional coefficient between the particles and the cylinder wall. In order to explore the influences of physical properties (density, size or friction) on mixing behavior, numerical 2D simulations were carried out systematically, in which one examined specific property being examined was exaggerated while the others were kept the same as that in the control group. The DEM simulations reveal that particle density and size are the dominating factors affecting mixing behaviors, while the effect of frictional coefficient is less significant. However, segregation due to any of the factors can be diminished by specifying a proper particle size distribution (multi-size with lower size ratio). 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.展开更多
A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction,which possesses a modified anisotropic conservative for...A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction,which possesses a modified anisotropic conservative force type used in dissipative particle dynamics.The influences of the repulsion strength and the particle shape on the phase behavior of soft rodlike particles are examined.In the simulations,we observe the formation of the nematic phase and smectic-A phase from the initially isotropic phase.Moreover,we find that shorter soft rodlike particles with anisotropic repulsive interactions can form a stable smectic-B phase.Our results demonstrate that the soft anisotropic purely-repulsive potential between the rodlike particles can reflect the interaction nature between soft rodlike particles in a simple way and is sufficient to produce a range of ordered LC-like mesophases.展开更多
基金Supported by the State Key Development Program for Basic Research of China (No.2006CB200305), the National Natural Science Foundation of China (No.50376004), and Ph.D. Program Foundation of Ministry of Education of China (No.20030007028).
文摘Presently developed two-phase turbulence models under-predict the gas turbulent fluctuation, because their turbulence modification models cannot fully reflect the effect of particles. In this paper, a two-time-scale dissipation model of turbulence modification, developed for the two-phase velocity correlation and for the dissipation rate of gas turbulent kinetic energy, is proposed and used to simulate sudden-expansion and swirling gas-particle flows. The proposed two-time scale model gives better results than the single-time scale model. Besides, a gas turbulence augmentation model accounting for the f'mite-size particle wake effect in the gas Reynolds stress equation is proposed. The proposed turbulence modification models are used to simulate two-phase pipe flows. It can properly predict both turbulence reduction and turbulence enhancement for a certain size of particles observed in experiments.
基金Supported by the National Natural Science Foundation of China(51206020)the Program for New Century Excellent Talents in University(NCET-12-0703)the Northeast Petroleum University Foundation
文摘Flow behavior of gas and particles in conical spouted beds is experimentally studied and simulated using the twofluid gas-solid model with the kinetic theory of granular flow.The bed pressure drop and fountain height are measured in a conical spouted bed of 100 mm I.D.at different gas velocities.The simulation results are compared with measurements of bed pressure drop and fountain height.The comparison shows that the drag coefficient model used in cylindrical beds under-predicted bed pressure drop and fountain height in conical spouted beds due to the partial weight of particles supported by the inclined side walls.It is found that the numerical results using the drag coefficient model proposed based on the conical spouted bed in this study are in good agreement with experimental data.The present study provides a useful basis for further works on the CFD simulation of conical spouted bed.
文摘Modeling pavement granular materials have played through an experimental or numerical approach to predict the a significant role in pavement design procedure. Modeling can be granular behavior during cyclic loading. Current design process in western Australia is based on linear elastic analysis of layers. The analysis is largely performed through a well-known program CIRCLY which is applied to model bound pavement material behavior. The KENLAYER is one of the common pavement software models used for pavement design in the United State which performs non-linear analysis for granular materials. Alternatively, a general finite element program such as ABAQUS can be used to model the complicated behavior ofmultilayer granular materials. This study is to compare results of numerical modeling with these three programs on a sample constructed pavement model. Moreover, a parametric study on the effects of Poisson ratio over the surface deflection of the flexible pavement has been conducted. It is found that increase in Poisson ratio of asphalt layer will increase the surface deflection while the increase in Poisson ratio of granular layers decreases the surface deflection.
文摘The principal aim of a vertical two-dimensional numerical model development is for estimating the particle tracing and mechanism of 10 mm and 2.5 mm debris. The particle tracing movement can be visually analyzed by using a high speed video camera (HSVC). A numerical model was developed using the Marker and Cell Method, which involves a Subgrid-Scale (SGS) model and the Particle Source in Cell (PSI-Cell) Method. The transportation processes of debris and air bubble were simulated in lagrangian form by introducing air bubbles and debris markers. Air bubble movement characteristics were simulated by this numerical model. Bigger particles flow at the upper part, while smaller particles attach near to the bottom. This phenomenon is similar to what we observed in the experimental studies. As a conclusion, the calibration processes for velocity was successful. The value of virtual mass (CM) was found to be one of the most important criteria that should be considered in the calibration process, as this parameter dominates fundamental characteristics of sediment particle movement in the lagrangian numerical scheme. The best fitted CM in this study was 0.35. The mean average velocity value ranging from 1.2% to 22.61% is obtained from the velocity results of numerical studies compared to the experimental studies.
文摘Based on the solid-liquid two-phase mixture transportation test, the renormalization group (RNG) k-e turbulent model was utilized to simulate the solid-liquid two-phase turbulent flow in a centrifugal pump. By comparing the simulated and experimental results, inner flow features were revealed to improve the abrasion characteristic of the solid-liquid two-phase centrifugal pump. The influence of the solid phase on centrifugal pump abrasive performance is small when the particle volume fraction is less than 2.5%. The aggregation degree of the solid particles is enhanced as the particle diameter increases from 0.1 to 1 mm; however, the mixture density on the pressure side is reduced when the particle diameter increases to 1 mm for the impact of inertia. The wear on the hub is most severe for the shear stress on this position; it is also the largest. The wear characteristic is affected greatly by the parameters of the solid phase. The wear chracteristic can be optimized by decreasing the blade outlet angle. In the modified design, the blade angle is different, whereas the other geometric dimensions remain the same. The improved pump is simulated to contrast with the original pump. The results show that the values of mixture density and shear stress both decrease. The wear condition of the blade is improved to a certain extent.
基金funded by National Science Foundation of China(Grant No. 10872214)
文摘Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simula- tions and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be reached by specifying a higher frictional coefficient between the particles and the cylinder wall. In order to explore the influences of physical properties (density, size or friction) on mixing behavior, numerical 2D simulations were carried out systematically, in which one examined specific property being examined was exaggerated while the others were kept the same as that in the control group. The DEM simulations reveal that particle density and size are the dominating factors affecting mixing behaviors, while the effect of frictional coefficient is less significant. However, segregation due to any of the factors can be diminished by specifying a proper particle size distribution (multi-size with lower size ratio). 2009 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
基金supported by the National Natural Science Foundation of China (21025416, 20974040, 50930001)the Program for New Century Excellent Talents in University of China,and Fok Ying Tung Education Foundation (114018)
文摘A novel mesoscopic simulation model is proposed to study the liquid crystal phase behavior of the anisotropic rodlike particles with a soft repulsive interaction,which possesses a modified anisotropic conservative force type used in dissipative particle dynamics.The influences of the repulsion strength and the particle shape on the phase behavior of soft rodlike particles are examined.In the simulations,we observe the formation of the nematic phase and smectic-A phase from the initially isotropic phase.Moreover,we find that shorter soft rodlike particles with anisotropic repulsive interactions can form a stable smectic-B phase.Our results demonstrate that the soft anisotropic purely-repulsive potential between the rodlike particles can reflect the interaction nature between soft rodlike particles in a simple way and is sufficient to produce a range of ordered LC-like mesophases.